Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
説明可能性と性能を両立させる深層学習の試み
Search
Henry Cui
October 23, 2021
Technology
0
210
説明可能性と性能を両立させる深層学習の試み
Henry Cui
October 23, 2021
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
220
Direct Preference Optimization
zchenry
0
410
Diffusion Model with Perceptual Loss
zchenry
0
450
レンズの下のLLM / LLM under the Lens
zchenry
0
190
Go with the Prompt Flow
zchenry
0
180
Mojo Dojo
zchenry
0
230
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
620
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
280
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
150
Other Decks in Technology
See All in Technology
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
200
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
150
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
6
1.6k
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
250
AIの長期記憶と短期記憶の違いについてAgentCoreを例に深掘ってみた
yakumo
4
400
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
200
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
530
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
400
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
510
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
810
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
210
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
510
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
A designer walks into a library…
pauljervisheath
210
24k
The Cult of Friendly URLs
andyhume
79
6.7k
Code Reviewing Like a Champion
maltzj
527
40k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
What's in a price? How to price your products and services
michaelherold
246
13k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Optimizing for Happiness
mojombo
379
70k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Transcript
説明可能性と性能を両立させる 深層学習の試み Henry Cui 機械学習の社会実装勉強会 2021年10月23日
自己紹介 ▪ 2017年 東京大学理学部情報科学科 学士 ▪ 2019年 同大学大学院情報理工学系研究科 修士 ▪ 現在 同研究科 博士課程 ▪ 研究テーマ
• 弱教師付き学習・能動学習・相対比較データ ▪ 趣味テーマ • 物体検出・説明可能性・因果推論 • 画像処理・音声処理一般 ▪ 更に趣味 • Ruby on Rails, React, NextJS 2
説明可能性 ▪ 機械学習モデルは意思決定に使う • 原料価格予測モデル → 入荷数量・タイミング • 人にまつわる予測モデル →
その人の人生に大きな影響の決定 • ... ▪ 予測出す同時に、説明も聞いて納得して判断下す 3 Statistical Modeling: The Two Cultures, Breiman, Statistical Science, 2001, Vol. 16, No. 3, 199–231
事後局所近似で説明 ▪ 既知 • 深層モデルは性能が良いが、 説明できない • 線形モデルは性能が悪いが、 説明しやすい ▪
両方のいいところを • 深層モデルで性能の良い予測 • 予測の近傍で線形モデルでわ かりやすく解釈 ▪ これでいいのか 4 "Why Should I Trust You?": Explaining the Predictions of Any Classifier, Riberiro et al., ACM SIGKDD 2016
これではだめかも ▪ 代理モデルの説明が完全正解でしたら、元のモデルを代替で きるはず ▪ 性能と説明可能性が両立できないは迷信? 5 Stop explaining black
box machine learning models for high stakes decisions and use interpretable models instead, Rudin, Nat Mach Intell 1, 206–215 (2019)
次の方向 ▪ 両立した深層モデルを作りましょう ▪ 深層モデルが説明できる予測を出すためには • 線形モデルのように、特徴量の連結になる • 特徴量は説明できる •
連結も説明できる ▪ 初歩的に画像認識のタスクでのアイデア • 画像に写っているモノの分類タスク • 可視化できる特徴量による線形結合 ▪ モノのパーツを特徴量に ▪ 例:鳥の分類で、鳥の頭・足・翼のパッチ画像を特徴量に 6
内容 ▪ モチベーション ▪ ProtoPNet ▪ Concept Bottleneck Models 7
▪ NeurIPS 2019 ▪ 自然な論理過程に従ったモデルアーキテクチャを提案 8
モデルアーキテクチャ ▪ 明示的に3つに分けた構造 9
学習方法 1. Prototypes 及び 最終層以外の学習 • 従来の分類ロスに Prototype のためのロス 2.
Prototypes の更新 • Prototypes を可視化可能なパッチに更新 • 適切な仮定下で、この更新はモデルの予測に影響しない 3. 最終層の学習 • 凸最適化問題として解く • Sparsity の正規化でテスト時より自然な説明ができる 10
実験結果 ▪ 良い分類性能を保ちつつ、説明可能 11
内容 ▪ モチベーション ▪ ProtoPNet ▪ Concept Bottleneck Models 12
▪ ICML 2020 • https://slideslive.com/38928546/concept-bottleneck-models ▪ 説明可能 + 介入によるモデル変更可能 13
特徴 ▪ 学習時に concept ラベルが必要 ▪ Concept 層を介して二部のモデルに分ける • 学習時の順番を変えられる
▪ 高効率で高性能 14
▪ Concept に明らかな間違いがあるときに、結果修正 テスト時に介入できる 15
まとめ ▪ 説明可能性は大事 ▪ 局所近似による説明はおかしいかも ▪ 説明可能性と性能は両立できるかも ▪ 両立させた深層モデル •
ProtoNet・Concept Bottleneck Models 16