Upgrade to Pro — share decks privately, control downloads, hide ads and more …

説明可能性と性能を両立させる深層学習の試み

Henry Cui
October 23, 2021

 説明可能性と性能を両立させる深層学習の試み

Henry Cui

October 23, 2021
Tweet

More Decks by Henry Cui

Other Decks in Technology

Transcript

  1. 自己紹介 ▪ 2017年 東京大学理学部情報科学科 学士 ▪ 2019年 同大学大学院情報理工学系研究科 修士 ▪ 現在   同研究科 博士課程 ▪ 研究テーマ

    • 弱教師付き学習・能動学習・相対比較データ ▪ 趣味テーマ • 物体検出・説明可能性・因果推論 • 画像処理・音声処理一般 ▪ 更に趣味 • Ruby on Rails, React, NextJS 2
  2. 説明可能性 ▪ 機械学習モデルは意思決定に使う • 原料価格予測モデル → 入荷数量・タイミング • 人にまつわる予測モデル →

    その人の人生に大きな影響の決定 • ... ▪ 予測出す同時に、説明も聞いて納得して判断下す 3 Statistical Modeling: The Two Cultures, Breiman, Statistical Science, 2001, Vol. 16, No. 3, 199–231
  3. 事後局所近似で説明 ▪ 既知 • 深層モデルは性能が良いが、 説明できない • 線形モデルは性能が悪いが、 説明しやすい ▪

    両方のいいところを • 深層モデルで性能の良い予測 • 予測の近傍で線形モデルでわ かりやすく解釈 ▪ これでいいのか 4 "Why Should I Trust You?": Explaining the Predictions of Any Classifier, Riberiro et al., ACM SIGKDD 2016
  4. 次の方向 ▪ 両立した深層モデルを作りましょう ▪ 深層モデルが説明できる予測を出すためには • 線形モデルのように、特徴量の連結になる • 特徴量は説明できる •

    連結も説明できる ▪ 初歩的に画像認識のタスクでのアイデア • 画像に写っているモノの分類タスク • 可視化できる特徴量による線形結合 ▪ モノのパーツを特徴量に ▪ 例:鳥の分類で、鳥の頭・足・翼のパッチ画像を特徴量に 6
  5. 学習方法 1. Prototypes 及び 最終層以外の学習 • 従来の分類ロスに Prototype のためのロス 2.

    Prototypes の更新 • Prototypes を可視化可能なパッチに更新 • 適切な仮定下で、この更新はモデルの予測に影響しない 3. 最終層の学習 • 凸最適化問題として解く • Sparsity の正規化でテスト時より自然な説明ができる 10