Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2023年度秋学期 応用数学(解析)第14回 測度論ダイジェスト(1)ルベーグ測度と完全加法性...
Search
Akira Asano
PRO
January 02, 2024
Education
1
54
2023年度秋学期 応用数学(解析)第14回 測度論ダイジェスト(1)ルベーグ測度と完全加法性 (2024. 1. 11)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2023a/AMA/
Akira Asano
PRO
January 02, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
5
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
5
2024年度秋学期 統計学 第9回 確からしさを記述する ― 確率 (2024. 11. 27)
akiraasano
PRO
0
6
2024年度秋学期 統計学 第10回 分布の推測とは - 標本調査,度数分布と確率分布 (2024. 11. 27)
akiraasano
PRO
0
6
2024年度秋学期 統計学 第8回 第1部の演習 (2024. 11. 6)
akiraasano
PRO
0
32
2024年度秋学期 統計学 第7回 データの関係を知る(2)ー 回帰と決定係数 (2024. 11. 6)
akiraasano
PRO
0
63
2024年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2024. 11. 8)
akiraasano
PRO
0
7
2024年度秋学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2024. 10. 30)
akiraasano
PRO
0
52
2024年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例 (2024. 10. 25)
akiraasano
PRO
0
33
Other Decks in Education
See All in Education
20240810_ワンオペ社内勉強会のノウハウ
ponponmikankan
2
880
情報処理工学問題集 /infoeng_practices
kfujita
0
120
LLMs for Social Simulation: Progress, Opportunities and Challenges
wingnus
1
100
Adobe Express
matleenalaakso
1
7.5k
開発終了後こそ成長のチャンス!プロダクト運用を見送った先のアクションプラン
ohmori_yusuke
2
160
Web Application Frameworks - Lecture 4 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
Algo de fontes de alimentación
irocho
1
360
1106
cbtlibrary
0
410
2409_CompanyInfo_Hanji_published.pdf
yosukemurata
0
370
小・中・高等学校における情報教育の体系的な学習を目指したカリキュラムモデル案/curriculum model
codeforeveryone
2
2.3k
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
2.5k
HP用_松尾研紹介資料.pdf
matsuolab
0
170
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
459
33k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
89
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Making Projects Easy
brettharned
115
5.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Raft: Consensus for Rubyists
vanstee
136
6.6k
GitHub's CSS Performance
jonrohan
1030
460k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Transcript
浅野 晃 関西大学総合情報学部 2023年度秋学期 応用数学(解析) 第4部・「その先の解析学」への導入 測度論ダイジェスト(1) ルベーグ測度と完全加法性 第14回
36 2
36 2 積分に対する疑問🤔🤔
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx p q
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx p q a
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx p q だから, a a f(x)dx = 0 a
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 aのところで幅0の直線を抜いても 積分の値は変わらない 積分 f(x) x
p q 分 q p f(x)dx p q だから, a a f(x)dx = 0 a
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 p q
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 可算無限個の直線を抜いても p q
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「数えられる」無限(再び) 5 自然数とは,数えるための数字 1, 2, 3, …
自然数の集合と同じ無限を 「数えられる無限」すなわち[可算無限]という そして,「無限」 その「個数」は[可算基数] ℵ0(アレフゼロ) (よく「可算無限個」という)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「数えられる」無限(再び) 5 自然数とは,数えるための数字 1, 2, 3, …
自然数の集合と同じ無限を 「数えられる無限」すなわち[可算無限]という そして,「無限」 その「個数」は[可算基数] ℵ0(アレフゼロ) (よく「可算無限個」という) ?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数の基数も ℵ0 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, … 自然数と「個数」は同じ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 8 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる
積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 8 この疑問に答えるには, 「幅」「面積」というものをもっと精密に考える必要がある 可算無限個の直線を抜いても p q
どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 8 この疑問に答えるには, 「幅」「面積」というものをもっと精密に考える必要がある 「測度論」 可算無限個の直線を抜いても p
q どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 9
36 9 ジョルダン測度📏📏
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 区分求積法で積分を求める 10 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 区分求積法で積分を求める 10 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 「極限」とは,無限ではなく有限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは a1 α
α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 α α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 α α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 εをどんなに小さくしても そういうNがある 数列{an}が α に収束するとは
数列が十分大きな番号 N まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 f(x) x p q グラフの下側の部分を 内部に含む長方形
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 f(x) x p q グラフの下側の部分を 内部に含む長方形
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形 [ジョルダン内測度]
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形 [ジョルダン内測度] こちらの下限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形 [ジョルダン内測度] こちらの下限 [ジョルダン外測度]
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度 両者が一致するとき[ジョルダン測度]という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度 両者が一致するとき[ジョルダン測度]という 2次元の場合これを[面積]という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度 両者が一致するとき[ジョルダン測度]という 2次元の場合これを[面積]という ジョルダン測度が定まる図形(集合)を[ジョルダン可測]という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 14 積分の例(区分求積法)に限らず これの上限が ジョルダン内測度 ジョルダン測度が定まる図形(集合)をジョルダン可測という これの下限が
ジョルダン外測度 両者が一致するときジョルダン測度 2次元の場合これを面積という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする J(∅) =
0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする 空集合の測度は0 J(∅)
= 0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする 空集合の測度は0 J(∅)
= 0 A ∩ B = ∅ ⇒ J(A ∪ B) = J(A) + J(B)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする 空集合の測度は0 重なりのない2つの集合については和集合の測度は測度の和
J(∅) = 0 A ∩ B = ∅ ⇒ J(A ∪ B) = J(A) + J(B)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする [有限加法性]という 空集合の測度は0
重なりのない2つの集合については和集合の測度は測度の和 J(∅) = 0 A ∩ B = ∅ ⇒ J(A ∪ B) = J(A) + J(B)
36 16
36 16 ルベーグ測度📏📏
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「有限個の長方形」 17 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 ジョルダン測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「有限個の長方形」 17 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 ジョルダン測度 極限は,「無限」とは違う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「有限個の長方形」 17 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 ジョルダン測度 極限は,「無限」とは違う 有限だが,必要なだけいくらでも大きくできる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q どれだけ拡大してみても,
びっしりと直線がならんでいる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q どれだけ拡大してみても,
びっしりと直線がならんでいる 可算無限個の隙間があるところに 有限個の長方形は配置できない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 こういう場合でも積分や面積を考えられるようにするには 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q
どれだけ拡大してみても, びっしりと直線がならんでいる 可算無限個の隙間があるところに 有限個の長方形は配置できない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 こういう場合でも積分や面積を考えられるようにするには 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q
どれだけ拡大してみても, びっしりと直線がならんでいる 可算無限個の長方形にもとづく測度が必要 可算無限個の隙間があるところに 有限個の長方形は配置できない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う … 図形(集合)S
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0 空集合の外測度は0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0 空集合の外測度は0 S ⊂ T = m∗(S) m∗(T)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0 空集合の外測度は0 S ⊂ T = m∗(S) m∗(T) 包含関係と外測度の大小関係は一致
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si) 可算無限個の 和集合
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si) 可算無限個の 和集合 可算無限個の和集合の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si) 可算無限個の 和集合 可算無限個の 外測度の和 可算無限個の和集合の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
…
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
…
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから ∞ i=1 Si ⊂ ∞ i=1 ∞ n=1 In(i)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから ∞ i=1 Si ⊂ ∞ i=1 ∞ n=1 In(i) 各Siに ついて
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから ∞ i=1 Si ⊂ ∞ i=1 ∞ n=1 In(i) 各Siに ついて I1(i), I2(i), I3(i), … で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 22 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算か 23 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算か 23 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3 すべての格子点を一筆でたどれば 自然数と一対一対応がつく👉👉可算基数をもつ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算か 23 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3 すべての格子点を一筆でたどれば 自然数と一対一対応がつく👉👉可算基数をもつ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 εは正の数であればいくらでも小さくできる ∞ i=1 Si ⊂
∞ i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 εは正の数であればいくらでも小さくできる ∞ i=1 Si ⊂
∞ i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i m∗( ∞ i=1 Si) ∞ i=1 m∗(Si)
36 25
36 25 ルベーグ測度と完全加法性
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S) Eの外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S) Eの外測度 Eのうち Sである部分の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S) Eの外測度 Eのうち Sである部分の 外測度 Eのうち Sでない部分の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? E1, E2, … を互いに共通部分を持たない可測集合列
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 可算無限個の和集合 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei) 和集合の測度は測度の和
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei) 可算無限個に分けた場合でもそうなる 和集合の測度は測度の和
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei) 可算無限個に分けた場合でもそうなる 和集合の測度は測度の和 (証明はテキストで)
36 28
36 28 零集合と 「ほとんどいたるところ」💭💭
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 29 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる
積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 29 この疑問に答えるために, pとqの間にある有理数全体が占める幅を考える 可算無限個の直線を抜いても p q
どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 29 この疑問に答えるために, pとqの間にある有理数全体が占める幅を考える 可算無限個ある 可算無限個の直線を抜いても p
q どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要 有理数全体の集合が数直線上で持つ幅(測度)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要 有理数全体の集合が数直線上で持つ幅(測度) 有理数全体を,区間の組み合わせで覆ったときの
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要 有理数全体の集合が数直線上で持つ幅(測度) 有理数全体を,区間の組み合わせで覆ったときの 「区間の長さの合計」の下限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 ε 2 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 ε 2 ε 22 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 ε 2 ε 22 ε 23 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 ε 2 + ε 22 + · · · + ε 2n + · · · = ε を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 ε 2 + ε 22 + · · · + ε 2n + · · · = ε を任意の正の数とすると ε … その下限は0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 ε 2 + ε 22 + · · · + ε 2n + · · · = ε を任意の正の数とすると ε … その下限は0 有理数全体のルベーグ測度は0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 零集合と「ほとんどいたるところ」 32 測度が0の集合を零集合という 有理数全体のルベーグ測度は0 「測度が0の集合を除いた部分で」を (この場合,「有理数を除いた部分で」) 「ほとんどいたるところで」(a.e.)という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 33 ルベーグ外測度 可算無限個の長方形で図形を覆ったときの, 長方形の面積の合計の下限 可測集合のルベーグ外測度がルベーグ測度 零集合と「ほとんどいたるところ」
有理数の集合のルベーグ測度は0 測度0の集合を「零集合」という 零集合を除いた部分を「ほとんどいたるところ」という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回は 34 最初の疑問はまだ解決していない 「有理数の位置にある可算無限個の直線を 抜いた」積分は,どうやって求めるのか? p q
ジョルダン測度にもとづく積分では,可算無限個の分割はできない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回は 34 最初の疑問はまだ解決していない 「有理数の位置にある可算無限個の直線を 抜いた」積分は,どうやって求めるのか? p q
ジョルダン測度にもとづく積分では,可算無限個の分割はできない ルベーグ測度にもとづくルベーグ積分を考える
36 35
36 35 問題について🌀🌀
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題 36 ことを証明せよ 集合 について ならば
のすべての部分集合は可測集合であり, その測度は0である S m*(S) = 0 S このことから,有理数全体の集合の測度は0なので, 有限個の数からなる集合の測度も0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題 36 ことを証明せよ 集合 について ならば
のすべての部分集合は可測集合であり, その測度は0である S m*(S) = 0 S このことから,有理数全体の集合の測度は0なので, 有限個の数からなる集合の測度も0 有理数の部分集合と 過不足のない一対一対応=全単射をつくることができる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題 36 ことを証明せよ 集合 について ならば
のすべての部分集合は可測集合であり, その測度は0である S m*(S) = 0 S このことから,有理数全体の集合の測度は0なので, 有限個の数からなる集合の測度も0 有理数の部分集合と 過不足のない一対一対応=全単射をつくることができる (証明はテキストの解答例で)