$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2023年度秋学期 応用数学(解析)第14回 測度論ダイジェスト(1)ルベーグ測度と完全加法性...
Search
Akira Asano
PRO
January 02, 2024
Education
0
120
2023年度秋学期 応用数学(解析)第14回 測度論ダイジェスト(1)ルベーグ測度と完全加法性 (2024. 1. 11)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2023a/AMA/
Akira Asano
PRO
January 02, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2025年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(1) 複素関数・正則関数 (2025. 12. 12)
akiraasano
PRO
0
2
2025年度秋学期 応用数学(解析) 第11回 振動と微分方程式 (2025. 12. 5)
akiraasano
PRO
0
11
2025年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2025. 12. 5)
akiraasano
PRO
0
5
2025年度秋学期 画像情報処理 第10回 離散フーリエ変換と離散コサイン変換 (2025. 11. 28)
akiraasano
PRO
0
18
2025年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2025. 11. 28)
akiraasano
PRO
0
15
2025年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2025. 11. 21)
akiraasano
PRO
0
12
2025年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2025. 11. 14)
akiraasano
PRO
0
16
2025年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(2) (2025. 11. 14)
akiraasano
PRO
0
20
2025年度秋学期 画像情報処理 第6回 ベクトルと行列について(数学の補足説明・第2部の準備),高速フーリエ変換 (2025. 10. 31)
akiraasano
PRO
0
9
Other Decks in Education
See All in Education
Node-REDで広がるプログラミング教育の可能性
ueponx
1
200
コマンドラインを見直そう(1995年からタイムリープ)
sapi_kawahara
0
400
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
180
Ch1_-_Partie_1.pdf
bernhardsvt
0
450
Master of Applied Science & Engineering: Computer Science & Master of Science in Applied Informatics: Artificial Intelligence and Data Science
signer
PRO
0
850
バケットポリシーの記述を誤りマネコンからS3バケットを操作できなくなりそうになった話
amarelo_n24
1
130
アジャイルの知見から新卒研修作り、そして組織作り
pokotyamu
0
110
1125
cbtlibrary
0
110
Réaliser un diagnostic externe
martine
0
520
1021
cbtlibrary
0
360
Avoin jakaminen ja Creative Commons -lisenssit
matleenalaakso
0
2k
Linguaxes de programación
irocho
0
470
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
A designer walks into a library…
pauljervisheath
210
24k
Site-Speed That Sticks
csswizardry
13
970
Code Review Best Practice
trishagee
73
19k
Building an army of robots
kneath
306
46k
Writing Fast Ruby
sferik
630
62k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
A Tale of Four Properties
chriscoyier
162
23k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
RailsConf 2023
tenderlove
30
1.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Transcript
浅野 晃 関西大学総合情報学部 2023年度秋学期 応用数学(解析) 第4部・「その先の解析学」への導入 測度論ダイジェスト(1) ルベーグ測度と完全加法性 第14回
36 2
36 2 積分に対する疑問🤔🤔
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx p q
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx p q a
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 積分 f(x) x p q
分 q p f(x)dx p q だから, a a f(x)dx = 0 a
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 3 aのところで幅0の直線を抜いても 積分の値は変わらない 積分 f(x) x
p q 分 q p f(x)dx p q だから, a a f(x)dx = 0 a
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 p q
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 可算無限個の直線を抜いても p q
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 4 幅0の直線を何本抜いても 積分の値は変わらない p q a
a f(x)dx = 0 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「数えられる」無限(再び) 5 自然数とは,数えるための数字 1, 2, 3, …
自然数の集合と同じ無限を 「数えられる無限」すなわち[可算無限]という そして,「無限」 その「個数」は[可算基数] ℵ0(アレフゼロ) (よく「可算無限個」という)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「数えられる」無限(再び) 5 自然数とは,数えるための数字 1, 2, 3, …
自然数の集合と同じ無限を 「数えられる無限」すなわち[可算無限]という そして,「無限」 その「個数」は[可算基数] ℵ0(アレフゼロ) (よく「可算無限個」という) ?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 どうやって数えるのか(再び) 6 自然数と対応がつく集合は数えられる 1, 2, 3, …
この集合の[基数]([濃度])は [可算無限集合]という ℵ0 集合A = {a, b, c, …} 自然数 過不足なく1対1対応がつく ([全単射]が存在する)なら
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 偶数の集合の濃度は(再び) 7 偶数と自然数とは対応がつくか 1, 2, 3, …,
n, … 偶数の基数も ℵ0 偶数 自然数 1対1対応がつく(全単射が存在する) 2, 4, 6, …, 2n, … 自然数と「個数」は同じ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 8 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる
積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 8 この疑問に答えるには, 「幅」「面積」というものをもっと精密に考える必要がある 可算無限個の直線を抜いても p q
どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 8 この疑問に答えるには, 「幅」「面積」というものをもっと精密に考える必要がある 「測度論」 可算無限個の直線を抜いても p
q どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 9
36 9 ジョルダン測度📏📏
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 区分求積法で積分を求める 10 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 区分求積法で積分を求める 10 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 「極限」とは,無限ではなく有限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは a1 α
α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 α α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 α α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 数列{an}が α に収束するとは 数列が十分大きな番号 N
まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数列の収束の定義(再び) 11 εをどんなに小さくしても そういうNがある 数列{an}が α に収束するとは
数列が十分大きな番号 N まで進めば a1 a2 a3 α α – ε α + ε ε ε … aN–1 aN+1 aN N 番より大きな番号 n については, an は,みなその狭い区間[α – ε, α + ε]に入る …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 f(x) x p q グラフの下側の部分を 内部に含む長方形
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 f(x) x p q グラフの下側の部分を 内部に含む長方形
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形 [ジョルダン内測度]
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形 [ジョルダン内測度] こちらの下限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン内測度と外測度 12 f(x) x p q グラフの下側の部分の
内部におさまる長方形 区間の分け方をいろいろ変えた時 こちらの上限 f(x) x p q グラフの下側の部分を 内部に含む長方形 [ジョルダン内測度] こちらの下限 [ジョルダン外測度]
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度 両者が一致するとき[ジョルダン測度]という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度 両者が一致するとき[ジョルダン測度]という 2次元の場合これを[面積]という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 13 f(x) x p q こちらの上限
f(x) x p q ジョルダン内測度 こちらの下限 ジョルダン外測度 両者が一致するとき[ジョルダン測度]という 2次元の場合これを[面積]という ジョルダン測度が定まる図形(集合)を[ジョルダン可測]という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度 14 積分の例(区分求積法)に限らず これの上限が ジョルダン内測度 ジョルダン測度が定まる図形(集合)をジョルダン可測という これの下限が
ジョルダン外測度 両者が一致するときジョルダン測度 2次元の場合これを面積という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする J(∅) =
0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする 空集合の測度は0 J(∅)
= 0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする 空集合の測度は0 J(∅)
= 0 A ∩ B = ∅ ⇒ J(A ∪ B) = J(A) + J(B)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする 空集合の測度は0 重なりのない2つの集合については和集合の測度は測度の和
J(∅) = 0 A ∩ B = ∅ ⇒ J(A ∪ B) = J(A) + J(B)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ジョルダン測度の性質 15 ジョルダン可測な集合Aの,ジョルダン測度を J(A) とする [有限加法性]という 空集合の測度は0
重なりのない2つの集合については和集合の測度は測度の和 J(∅) = 0 A ∩ B = ∅ ⇒ J(A ∪ B) = J(A) + J(B)
36 16
36 16 ルベーグ測度📏📏
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「有限個の長方形」 17 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 ジョルダン測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「有限個の長方形」 17 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 ジョルダン測度 極限は,「無限」とは違う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 「有限個の長方形」 17 積分 は, 分 q p
f(x)dx f(x) x p 長方形で近似 q 積分区間を 重なりのない,有限個の 区間に分けて, その上の長方形の面積の極限 ジョルダン測度 極限は,「無限」とは違う 有限だが,必要なだけいくらでも大きくできる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q どれだけ拡大してみても,
びっしりと直線がならんでいる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q どれだけ拡大してみても,
びっしりと直線がならんでいる 可算無限個の隙間があるところに 有限個の長方形は配置できない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 こういう場合でも積分や面積を考えられるようにするには 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q
どれだけ拡大してみても, びっしりと直線がならんでいる 可算無限個の隙間があるところに 有限個の長方形は配置できない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有限個の長方形では,困る 18 こういう場合でも積分や面積を考えられるようにするには 幅0の直線を可算無限個抜いても, 積分の値は変わらないのか? p q
どれだけ拡大してみても, びっしりと直線がならんでいる 可算無限個の長方形にもとづく測度が必要 可算無限個の隙間があるところに 有限個の長方形は配置できない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う … 図形(集合)S
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0 空集合の外測度は0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0 空集合の外測度は0 S ⊂ T = m∗(S) m∗(T)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ルベーグ外測度 19 Sを 重なりを許した可算無限個の長方形で覆う ルベーグ外測度という … 図形(集合)S
それらの長方形の面積の和の下限を m∗(S) m∗(∅) = 0 空集合の外測度は0 S ⊂ T = m∗(S) m∗(T) 包含関係と外測度の大小関係は一致
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si) 可算無限個の 和集合
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si) 可算無限個の 和集合 可算無限個の和集合の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性 20 ジョルダン測度の「有限加法性」 … ルベーグ外測度については完全劣加法性 A ∩
B = ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 有界な集合の列S1, S2, …について ∞ i=1 Si が有界ならば m∗( ∞ i=1 Si) ∞ i=1 m∗(Si) 可算無限個の 和集合 可算無限個の 外測度の和 可算無限個の和集合の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
…
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
…
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 S1, S2, …, Si,
… I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから ∞ i=1 Si ⊂ ∞ i=1 ∞ n=1 In(i)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから ∞ i=1 Si ⊂ ∞ i=1 ∞ n=1 In(i) 各Siに ついて
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 21 有界な集合の列 こういう覆い方I1(i), I2(i), I3(i), …が存在する
S1, S2, …, Si, … I1(i) I2(i) I3(i) … Siを長方形で覆う Si ⊂ I1(i) ∪ I2(i) ∪ · · · ∪ In(i) ∪ . . . ∞ n=1 |In(i) | < m∗(Si) + ε 2i その下限 よりも少し大きい 面積の和が この覆い方は 他のSiについても同様だから ∞ i=1 Si ⊂ ∞ i=1 ∞ n=1 In(i) 各Siに ついて I1(i), I2(i), I3(i), … で覆う
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 22 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算か 23 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算か 23 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3 すべての格子点を一筆でたどれば 自然数と一対一対応がつく👉👉可算基数をもつ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数は可算か 23 有理数の集合は,可算基数をもつか 分母を横軸, 分子を縦軸とすると, 有理数は図の黒点(格子点) ※分母0の点は除く ※重複あり
分母 分子 0 1 2 3 1 2 3 すべての格子点を一筆でたどれば 自然数と一対一対応がつく👉👉可算基数をもつ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 ∞ i=1 Si ⊂ ∞
i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 εは正の数であればいくらでも小さくできる ∞ i=1 Si ⊂
∞ i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全劣加法性の証明 24 εは正の数であればいくらでも小さくできる ∞ i=1 Si ⊂
∞ i=1 ∞ n=1 In(i) 可算無限個の長方形の,可算無限個の和集合 可算無限個の長方形の和集合 と同じ m∗( ∞ i=1 Si) ∞ i=1 ∞ n=1 |In(i) | < ∞ i=1 m∗(Si) + ε 2i = ∞ i=1 m∗(Si) + ε ∞ n=1 |In(i) | < m∗(Si) + ε 2i m∗( ∞ i=1 Si) ∞ i=1 m∗(Si)
36 25
36 25 ルベーグ測度と完全加法性
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S) Eの外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S) Eの外測度 Eのうち Sである部分の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 可測集合 26 であるとき, m∗(E) = m∗(E ∩
S) + m∗(E ∩ Sc) 集合Sが,任意の集合Eについて Sは[ルベーグ可測]である([可測集合]である)という を[ルベーグ測度](あるいは単に[測度])という m(S) ≡ m*(S) Eの外測度 Eのうち Sである部分の 外測度 Eのうち Sでない部分の 外測度
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? E1, E2, … を互いに共通部分を持たない可測集合列
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 可算無限個の和集合 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei) 和集合の測度は測度の和
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei) 可算無限個に分けた場合でもそうなる 和集合の測度は測度の和
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 完全加法性 27 ジョルダン測度の「有限加法性」 … A ∩ B
= ∅ ⇒ J(A ∪ B) = J(A) + J(B) 可算無限個の長方形を使う場合も 同じような性質がなりたたないか? 完全加法性 可算無限個の和集合 測度の可算無限個の和 E1, E2, … を互いに共通部分を持たない可測集合列 m∗( ∞ i=1 Ei) = ∞ i=1 m∗(Ei) 可算無限個に分けた場合でもそうなる 和集合の測度は測度の和 (証明はテキストで)
36 28
36 28 零集合と 「ほとんどいたるところ」💭💭
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 29 可算無限個の直線を抜いても p q どれだけ拡大してみても, びっしりと直線がならんでいる
積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 29 この疑問に答えるために, pとqの間にある有理数全体が占める幅を考える 可算無限個の直線を抜いても p q
どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 29 この疑問に答えるために, pとqの間にある有理数全体が占める幅を考える 可算無限個ある 可算無限個の直線を抜いても p
q どれだけ拡大してみても, びっしりと直線がならんでいる 積分の値は変わらないのか?
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要 有理数全体の集合が数直線上で持つ幅(測度)
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要 有理数全体の集合が数直線上で持つ幅(測度) 有理数全体を,区間の組み合わせで覆ったときの
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 30 可算無限個ある有理数の幅を考えるには ルベーグ測度の考え方が必要 有理数全体の集合が数直線上で持つ幅(測度) 有理数全体を,区間の組み合わせで覆ったときの 「区間の長さの合計」の下限
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 を任意の正の数とすると ε
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 ε 2 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 ε 2 ε 22 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 有理数 を a1 ,
a2 , … a1 a2 a3 ε 2 ε 22 ε 23 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 ε 2 + ε 22 + · · · + ε 2n + · · · = ε を任意の正の数とすると ε …
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 ε 2 + ε 22 + · · · + ε 2n + · · · = ε を任意の正の数とすると ε … その下限は0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 有理数全体が占める幅 31 こういうふうに覆うことができる 区間の長さの合計 有理数 を a1
, a2 , … a1 a2 a3 ε 2 ε 22 ε 23 ε 2 + ε 22 + · · · + ε 2n + · · · = ε を任意の正の数とすると ε … その下限は0 有理数全体のルベーグ測度は0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 零集合と「ほとんどいたるところ」 32 測度が0の集合を零集合という 有理数全体のルベーグ測度は0 「測度が0の集合を除いた部分で」を (この場合,「有理数を除いた部分で」) 「ほとんどいたるところで」(a.e.)という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 33 ルベーグ外測度 可算無限個の長方形で図形を覆ったときの, 長方形の面積の合計の下限 可測集合のルベーグ外測度がルベーグ測度 零集合と「ほとんどいたるところ」
有理数の集合のルベーグ測度は0 測度0の集合を「零集合」という 零集合を除いた部分を「ほとんどいたるところ」という
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回は 34 最初の疑問はまだ解決していない 「有理数の位置にある可算無限個の直線を 抜いた」積分は,どうやって求めるのか? p q
ジョルダン測度にもとづく積分では,可算無限個の分割はできない
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回は 34 最初の疑問はまだ解決していない 「有理数の位置にある可算無限個の直線を 抜いた」積分は,どうやって求めるのか? p q
ジョルダン測度にもとづく積分では,可算無限個の分割はできない ルベーグ測度にもとづくルベーグ積分を考える
36 35
36 35 問題について🌀🌀
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題 36 ことを証明せよ 集合 について ならば
のすべての部分集合は可測集合であり, その測度は0である S m*(S) = 0 S このことから,有理数全体の集合の測度は0なので, 有限個の数からなる集合の測度も0
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題 36 ことを証明せよ 集合 について ならば
のすべての部分集合は可測集合であり, その測度は0である S m*(S) = 0 S このことから,有理数全体の集合の測度は0なので, 有限個の数からなる集合の測度も0 有理数の部分集合と 過不足のない一対一対応=全単射をつくることができる
36 2023年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題 36 ことを証明せよ 集合 について ならば
のすべての部分集合は可測集合であり, その測度は0である S m*(S) = 0 S このことから,有理数全体の集合の測度は0なので, 有限個の数からなる集合の測度も0 有理数の部分集合と 過不足のない一対一対応=全単射をつくることができる (証明はテキストの解答例で)