Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Pandasによる競馬データの分析
Search
anonaka
July 06, 2017
Research
3
2.1k
Pandasによる競馬データの分析
Pandasとmatplotlibを使って競馬の馬の走るスピードを分析をしてみました。結論は、ドメイン知識は重要ということです。:-)
anonaka
July 06, 2017
Tweet
Share
More Decks by anonaka
See All by anonaka
Introduction to the data analysis using python
anonaka
0
1.1k
Rubyで電話をかける
anonaka
0
490
PyCon APAC 2017へ行こう!
anonaka
0
720
PythonでSlack Bot
anonaka
0
1.1k
Other Decks in Research
See All in Research
最適化と機械学習による問題解決
mickey_kubo
0
160
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
150
Self-supervised audiovisual representation learning for remote sensing data
satai
3
250
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3k
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
400
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
220
「エージェントって何?」から「実際の開発現場で役立つ考え方やベストプラクティス」まで
mickey_kubo
0
140
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
290
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
330
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
260
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
590
NLP Colloquium
junokim
1
190
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Speed Design
sergeychernyshev
32
1.1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Documentation Writing (for coders)
carmenintech
73
5k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
Practical Orchestrator
shlominoach
190
11k
Designing Experiences People Love
moore
142
24k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Transcript
1BOEBTʹΑΔڝഅσʔλੳ גࣜձࣾ909;0 த
ࣗݾհ w 909;0ΤόϯδΣϦετ w ۭඈͿ1ZUIPOϓϩάϥϚ
909;0 w ిɺ4.4ͷ8FC"1*Λఏڙ͍ͯ͠·͢ w ΦϑΟεͳ͠ w શһ͕ϦϞʔτϫʔΫ
ಈػ w ͦͷੲɺڝഅ༧ͷ8FCαʔϏεΛͭͬͨ͘ w ͔͠͠ڝഅૉਓ w 1BOEBTͷ࿅श
ڝഅσʔλੳ w +"37"/͔Βσʔλ͕औΕΔ w ༗ྉαʔϏε w ڝഅͷσʔλʔͦͦ͜͜ੵ͕͋Δ w Ҏ্ͷ+3"ެࣜσʔλ
·ͣഅͷεϐʔυΛ
None
ԾઆΛཱͯΔ w ͘ΕർΕΔͩΖ͏ w ̎࣍ଟ߲ࣜͰճؼੳ
None
ଞͷௐͯΈΔ
None
None
Ͳ͏Βɺڑ͕৳ͼΔͱ͕ૣ͘ ͳΔͷීวతͷΑ͏ͩ
ڝഅυϝΠϯͷΤΩεύʔτʹॿ͚ΛٻΊΔ
ΤΩεύʔτͷΞυόΠε w ͍Ζ͍ΖͳڝഅͷσʔλΛɺ·ͱΊͯൺΔͷ ཚ w ઢۂ͕Γ֯ͷ͞ΈΜͳҧ͏ɻࡔ͋ͬͨΓ ͢Δɻ
ڝഅ͝ͱʹੳ ·ͣ౦ژڝഅ͔Β
None
Ծઆূ໌͞Εͨ
શࠃͷڝഅΛௐΔ
͔͠͠ɺྫ͕ଓʑʜ
None
None
࣍ͷΒ͖ͭ ਖ਼ͷϨʔε Լʹತ ෛͷϨʔε ্ʹತ
ڝഅͷίʔεਤΛ ோΊͯΈΔ ʢ͗͢ʜʣ
౦ژڝഅ
ژڝഅ
ࡕਆڝഅ
தࢁڝഅ
–؏Ҫ ॣ (AlphaImpact։ൃऀ) τϥοΫͷछྨ ࣳɾμʔτɾো ڑ͕ҧ͑ผͷڝٕ
͕࣍ܭࢉͰ͖ͳ͍έʔε ৽ׁڝഅɹμʔτ
ֶΜͩ͜ͱ w Ͳ͏ΒഅNఔͰർΕͳ͍Β͍͠ w υϝΠϯࣝॏཁ
ࢀߟจݙ தҪӻ࢘ஶ *5ΤϯδχΞͷͨΊͷػցֶशཧೖ ٕज़ධࣾ
ࠓޙͷ՝ w ͍͔ʹͯ͠ճऩΛʹ͍͔ͬͯ͘
͔͜͜Βઌ༗ྉձһ༷ݶఆ ͱͳΓ·͢ʢӕʣ
None