参考・引用文献 15
• Beggrow, E. P., Ha, M., Nehm, R. H., Pearl, D., & Boone, W. J. (2014): Assessing scientific practices using machine-
learning methods: How closely do they match clinical interview performance?. Journal of Science education and
Technology, 23(1), 160-182.
• Breiman, L. (2001): Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical
science, 16(3), 199-231.
• Gerard, L. F., & Linn, M. C. (2016): Using automated scores of student essays to support teacher guidance in classroom
inquiry. Journal of Science Teacher Education, 27(1), 111-129.
• Lee, H. S., Gweon, G. H., Lord, T., Paessel, N., Pallant, A., & Pryputniewicz, S. (2021): Machine learning-enabled
automated feedback: supporting students’ revision of scientific arguments based on data drawn from simulation. Journal
of Science Education and Technology, 30(2), 168-192.
• Moharreri, K., Ha, M., & Nehm, R. H. (2014): EvoGrader: an online formative assessment tool for automatically
evaluating written evolutionary explanations. Evolution: Education and Outreach, 7(1), 1-14.
• 中村大輝, 松浦拓也 (2022): 文系・理系の自己認識の形成時期に関する一考察.日本科学教育学会年会論文集,
46, 564-567.
• 杉山聡 (2022): 本質を捉えたデータ分析のための分析モデル入門. ソシム.
• Tekin, A. (2014): Early prediction of students’ grade point averages at graduation: A data mining approach. Eurasian
Journal of Educational Research, 54, 207-226.
• Zhai, X., He, P., & Krajcik, J. (2022): Applying machine learning to automatically assess scientific models. Journal of
Research in Science Teaching.
• Zhai, X., Yin, Y., Pellegrino, J. W., Haudek, K. C., & Shi, L. (2020a): Applying machine learning in science assessment:
a systematic review. Studies in Science Education, 56(1), 111-151.