Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Who's Afraid Of Machine Learning? & first steps...
Search
Britt Barak
April 23, 2018
Technology
5
900
Who's Afraid Of Machine Learning? & first steps with TensorFlow
Chicago Roboto & Android Makers 2018
Britt Barak
April 23, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
130
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
450
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2.1k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
120
What an ML-ful World! MLKit for Android dev.
brittbarak
0
130
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
460
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
480
Other Decks in Technology
See All in Technology
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
760
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
220
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
1
360
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
120
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
230
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
530
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.2k
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
220
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
1
470
Flutterでキャッチしないエラーはどこに行く
taiju59
0
230
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
270
生成AIでセキュリティ運用を効率化する話
sakaitakeshi
0
570
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
Who’s afraid of Machine Learning? Britt Barak
Britt Barak Google Developer Expert - Android Women Techmakers Israel
Britt Barak @brittBarak
None
None
None
None
None
None
None
None
In a machine...
None
Strawberry Not Strawberry
Input Red Seeds pattern Top leaves 0.64 0.75 0.4
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input 0.5 0.8 0.3 Red Seeds pattern
Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4 ___________ 1.04
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4 ___________ 1.04 + 0.7
0.64 0.75 0.4 1.74 0.5 * 0.64 + 0.8 *
0.75 + 0.3 * 0.4 ___________ 1.04 + 0.7 ___________ 1.74 Input Red Seeds pattern Top leaves 0.5 0.8 0.3
0.64 0.75 0.4 1.02 1.74 Input Red Seeds pattern Top
leaves 0.97
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 1.02
1.74 0.97
0.64 0.75 0.4 Output Strawberry Not Strawberry Input Red Seeds
pattern Top leaves 1.02 1.74 0.97 0.87 0.13
0.64 0.75 0.4 0.87 0.13 Strawberry Not Strawberry Output Input
Red Seeds pattern Top leaves 1.02 1.74 0.97
None
0.7 0.03 0.01 3.72 0.89 1.92 Strawberry Not Strawberry Output
Input Red Seeds pattern Top leaves 0.2 0.8
0.7 0.03 0.01 3.72 0.89 1.92 Strawberry Not Strawberry Output
Input Red Seeds pattern Top leaves 0.2 0.8
0.7 0.03 0.01 3.72 0.89 1.92 0.2 0.8 Strawberry Not
Strawberry Output Input Red Seeds pattern Top leaves
0.5 * 0.64 + 0.8 * 0.75 + 0.3 *
0.4 ___________ 1.04 + 0.7 ___________ 1.74 Strawberry Not Not Strawberry Not Not Strawberry Not Not
Training TRAINING
0.64 0.75 0.4 1.02 1.74 0.97 0.89 0.11 Strawberry Not
Strawberry Output Input Red Seeds pattern Top leaves
Strawberry Not Strawberry Output Input Hidden Red Seeds pattern Top
leaves
None
Data science
We get a trained model !
TensorFlow - Open source - Widely used - Flexible for
scale: - 1 or more CPUs / GPUs - desktop, server, mobile device
Strawberry
Strawberry
Strawberry • Bandwidth • Performance • Latency • Network •
Security • Privacy • …
TensorFlow Mobile - Speech Recognition - Image Recognition - Object
Localization - Gesture Recognition - Translation - Text Classification - Voice Synthesis
Lightweight Fast Cross platform
MobileNet Inception-V3 SmartReply Models
None
Image Classifier classifier .classify(bitmap) label
1. Add Assets
None
labels.txt strawberry orange lemon fig pineapple banana jackfruit custard apple
pomegranate hay carbonara chocolate sauce dough meat loaf
2. Add TensorFlow Lite
repositories { maven { url 'https://google.bintray.com/tensorflow' } } dependencies
{ // ... implementation 'org.tensorflow:tensorflow-lite:+' } build.gradle
android { aaptOptions { noCompress "tflite" } } build.gradle
3. Create ImageClassifier.java
Image Classifier
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter();
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model);
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH);
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH); FileInputStream inputStream = new
FileInputStream(descriptor.getFileDescriptor()); FileChannel channel = inputStream.getChannel();
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH); FileInputStream inputStream = new
FileInputStream(descriptor.getFileDescriptor()); FileChannel channel = inputStream.getChannel(); long start = descriptor.getStartOffset(); long length = descriptor.getDeclaredLength(); return channel.map(FileChannel.MapMode.READ_ONLY, start, length); }
Image Classifier [strawberry, apple, ... ] labels.txt
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList();
labels.txt strawberry orange lemon fig pineapple banana jackfruit custard apple
pomegranate hay carbonara chocolate sauce dough meat loaf
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
}
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); }
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); List<String> labelList = new ArrayList<>(); String line; while ((line = reader.readLine()) != null) { labelList.add(line); } }
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); List<String> labelList = new ArrayList<>(); String line; while ((line = reader.readLine()) != null) { labelList.add(line); } reader.close(); return labelList; }
Image Classifier [ [0..6] , [ 0.1 ] , ...
] [strawberry, apple, ... ] probArray labels.txt
probArray = { [0.7], [0.3], [0], [0], } labelList =
{ strawberry, apple, pineapple, banana, } 0.3
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList(); probArray = new float[1][labelList.size()];
Image Classifier [......] [ [0..6] , [ 0.1 ] ,
... ] [strawberry, apple, ... ] ByteBuffer probArray labels.txt
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList(); probArray = new float[1][labelList.size()]; imgData = ByteBuffer.allocateDirect( DIM_IMG_SIZE_X * DIM_IMG_SIZE_Y * DIM_PIXEL_SIZE); imgData.order(ByteOrder.nativeOrder());
4. Run the model / classify
classifier .classify(bitmap) Image Classifier [......] [ [0..6] , [ 0.1
] , ... ] [strawberry, apple, ... ] ByteBuffer probArray labels.txt
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap);
}
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); }
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); int pixel = 0; for (int i = 0; i < DIM_IMG_SIZE_X; ++i) { for (int j = 0; j < DIM_IMG_SIZE_Y; ++j) { final int val = intValues[pixel++]; imgData.put((byte) ((val >> 16) & 0xFF)); imgData.put((byte) ((val >> 8) & 0xFF)); imgData.put((byte) (val & 0xFF)); } } }
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); int pixel = 0; for (int i = 0; i < DIM_IMG_SIZE_X; ++i) { for (int j = 0; j < DIM_IMG_SIZE_Y; ++j) { final int val = intValues[pixel++]; imgData.put((byte) ((val >> 16) & 0xFF)); imgData.put((byte) ((val >> 8) & 0xFF)); imgData.put((byte) (val & 0xFF)); } } }
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap); tflite.run(imgData,
probArray); }
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap); tflite.run(imgData,
probArray); String textToShow = getTopLabels(); return textToShow; }
Strawberry - 0.87 Apple - 0.13 Tomato - 0.01
Machine Learning is a new world
Links - Tensorflow - https://www.tensorflow.org/ - Tensorflow lite - https://www.tensorflow.org/mobile/tflite/
- Codes labs - codelabs.developers.google.com/codelabs/tensorflow-for-poets-2-tflite/ - Google’s Machine Learning Crash Course - developers.google.com/machine-learning/crash-course/ - [Dr. Joe Dispenza]
Thank you! Keep in touch! Britt Barak @brittBarak