s to a limit L , so that lim s !1 p(y| s ) = L . By Bayes’ rule, p( |y) = p(y| )p( | ) 1 R 1 p(y| )p( | )d = p(y| )p( | ) p(y| ) | {z } constant w.r.t. . Integrating out the other parameters s = h cons , 1, 2, ..., k i to obtain the posterior distribution of s, p( s |y) = 1 R 1 p(y| )p( | )d s p(y| ) , (1) and the prior distribution of s, p( s | ) = 1 Z 1 p( | )d s . Notice that p( s |y) / p( s | ) iff p( s |y) p( | ) = k , where the constant k 6= 0 .Thus,