Upgrade to Pro — share decks privately, control downloads, hide ads and more …

AWS Summit Japan 2025 Amazon SageMaker HyperPod...

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Kazuki Fujii Kazuki Fujii
December 14, 2025

AWS Summit Japan 2025 Amazon SageMaker HyperPodを利用した日本語LLM(Swallow)の構築 (CUS-02)

Avatar for Kazuki Fujii

Kazuki Fujii

December 14, 2025
Tweet

More Decks by Kazuki Fujii

Other Decks in Research

Transcript

  1. 自己紹介 藤井 一喜 / Kazuki Fujii 東京科学大学 情報理工学院 修士課程2年 Preferred

    Networks PLaMo インターン / Turing株式会社 基盤AIチーム 業務委託 • Swallow Project 事前学習、チューニング、データ高品質化を担当 • 研究興味 ◦ 大規模モデルの分散学習、低精度計算による高速化 ◦ データ品質改善によるLLMの性能改善 1
  2. Swallow Project オープンモデルを利用して日本語に強い 大規模言語モデル (LLM) を研究開発する • 東京科学大学、産総研の共同研究 ◦ 岡崎研究室

    (NLP) ◦ 横田研究室 (HPC, ML) • 数多くの日本語LLMをリリース ◦ これまでに12モデルシリーズ を公開 ◦ 産業応用 にも活用される 2
  3. 継続事前学習 (Continual Pre-Training) 3 Llama-3, Gemma-2 ... Open LLMs 日本語

    + 英語 + コード Llama-3-Swallow Gemma-2-Swallow • 利点 o Open LLMの力を利用できる o 比較的低コストで学習可能 • 欠点 o アーキテクチャの制約 o 元モデルのLicenseに縛られる 課題 • 破滅的忘却 • 英語スコアの低下
  4. リリースモデル ▪ Llama-3.3-Swallow-70B-v0.4 ▪ 2025/3/10 リリース済み ▪ 日本語QA能力強化 ▪ コード強化

    v1 ▪ Llama-3.1-Swallow-8B-v0.5 ▪ 2025/6 リリース済み ▪ 日本語QA能力強化 ▪ コード強化 v2 ▪ 数学能力強化 7
  5. Llama-3.3-Swallow-70B-v0.4の性能 日本語理解、生成タスク (academic tasks) GPT-4o > Swallow > Qwen-2.5 72B

    となり、2025/3 時点でGPT-4o相当 英語、数学、コードでは依然 改善の余地あり 8
  6. 日本語QA能力の強化 教育的価値 の高いテキストの厳選 & QA形式の日本語合成テキストの利用 9 Wikipediaベース分類器 LLMベース分類器 を利用し、教育的価値 がトップ10%に認

    定されたテキストを採用 Gemma-2-27b-itを利用しQA形式に 高品質コーパスを"言い換え た” 合成テキストを採用 Llama-3.3-Swallow-70B-v0.4 の結果から抜粋
  7. 学習の高速化の概要 通信(communication)と計算(computation)のOverlap 15 A G A G A G 0

    1 2 forward 2 1 0 R S R S R S backward A G 0 1 2 A G A G 2 R S 1 0 R S R S time save AG: parameter All-Gather RS: gradient Reduce-Scatter 通信と計算のOverlap (重ね合わせ) により高速化 学習結果への影響なし → 実装は複雑化するが、 通常メリットしかない
  8. P5 Instance Amazon SageMaker HyperPod NVIDIA H100GPUを搭載した インスタンスで学習を実施 計算ノード:  P5.48xlarge

    32 instances ジョブスケジューラー :  Slurm ストレージ:  Amazon FSx for Lustre 16
  9. Amazon Managed Grafanaによる監視基盤 Amazon Managed Service for PrometheusとAmazon Managed Grafanaによる監視基盤

    学習時に発生する障害情報を収集 → エラー発生時の問題究明を迅速化 17 DCGM Exporter (GPU) EFA Exporter (EFA) 学習速度の低下や ジョブの停止の原因の 切り分けを容易に Down timeの最小化を実現
  10. Amazon FSx for Lustre & Data Relation Amazon FSx for

    LustreとAmazon S3間のデータ転送の簡便化 計算ノード(GPU)は高コストなためデプロイ後すぐに学習を開始したい = データ転送などでGPUがidleになるのは避けたい → 事前にAmazon S3にupload & DRA設定 18 DRAにより 転送ミス、デプロイ後の作業の肥 大化を回避 → 学習準備や計算ノードの デプロイに集中することが可能 Amazon FSx for Lutreへの 読み込みも高速
  11. Swallow Projectの今後 ▪ モデルの高性能化 ▪ ベースモデル ▪ 事前学習モデルの数学、コード能力 のさらなる強化 ▪

    ドメイン(金融、医療、法律)の知識の強化 ▪ チューニングモデル ▪ 強化学習 によるReasoning能力の強化 ▪ thinkモードとchatモードの動的切り替えの獲得 ▪ 学習、推論の低コスト化 ▪ 学習 ▪ 低精度学習 の実用化 (FP8, Blockwise Quantization) ▪ 推論 ▪ モデルアーキテクチャの変更 (SSM, Hybridモデル) 20
  12. Swallow ProjectとAWS ▪ リリースモデルの学習 ▪ 学習データ、学習手法の検討は、大学の計算資源で行い大規模学習を AWS 等で実施 ▪ Llama-3.3-Swallow-70B-v0.4,

    Llama-3.1-Swallow-8B-v0.5 など ▪ 最新世代GPUでの研究開発 ▪ MXFP8等の低精度を利用した推論、学習の高速化の研究開発で利用 (Blackwell) ▪ 大学のスパコンには導入されていないため ▪ TSUBAME 4.0 (H100) ▪ ABCI 3.0 (H200) 21