$30 off During Our Annual Pro Sale. View Details »

Conservation Laws for Gradient Flows

Gabriel Peyré
September 29, 2023

Conservation Laws for Gradient Flows

Talk associated to the paper: https://arxiv.org/abs/2307.00144

Gabriel Peyré

September 29, 2023
Tweet

More Decks by Gabriel Peyré

Other Decks in Research

Transcript

  1. Conservation Laws


    for Gradient Flows
    Gabriel Peyré
    É C O L E N O R M A L E
    S U P É R I E U R E
    Sibylle


    Marcotte
    Remi


    Gribonval

    View Slide

  2. Overview
    Conservation


    laws
    Finding


    conservation laws
    Have we found them all?
    Ferdinand Georg


    Frobenius
    Sophus


    Lie

    View Slide

  3. g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Conservation laws
    ℰY
    X
    (θ) :=
    1
    N
    N

    i=1
    ℓ(g(θ, xi
    ), yi
    )
    Neural network (2 layers): θ = (U, V)
    σ U
    V⊤
    x g(θ, x)
    Empirical risk minimization:
    3

    View Slide

  4. g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Conservation laws
    ℰY
    X
    (θ) :=
    1
    N
    N

    i=1
    ℓ(g(θ, xi
    ), yi
    )
    Neural network (2 layers): θ = (U, V)
    σ U
    V⊤
    x g(θ, x)
    Empirical risk minimization:
    ·
    θ(t) = − ∇ℰY
    X
    (θ(t))
    Gradient flow:
    θ(0)
    θ(t)
    −∇ℰ
    Y1
    X1



    Y2
    X2
    3

    View Slide

  5. g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Conservation laws
    ℰY
    X
    (θ) :=
    1
    N
    N

    i=1
    ℓ(g(θ, xi
    ), yi
    )
    Neural network (2 layers): θ = (U, V)
    Conservation law :
    h(θ)
    ∀X, Y, t, h(θ(t)) = h(θ(0))
    σ U
    V⊤
    x g(θ, x)
    Empirical risk minimization:
    ·
    θ(t) = − ∇ℰY
    X
    (θ(t))
    Gradient flow:
    {θ : h(θ) = h(θ(0))}
    θ(0)
    θ(t)
    −∇ℰ
    Y1
    X1



    Y2
    X2
    3

    View Slide

  6. g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Conservation laws
    ℰY
    X
    (θ) :=
    1
    N
    N

    i=1
    ℓ(g(θ, xi
    ), yi
    )
    Neural network (2 layers): θ = (U, V)
    Conservation law :
    h(θ)
    ∀X, Y, t, h(θ(t)) = h(θ(0))
    σ U
    V⊤
    x g(θ, x)
    Empirical risk minimization:
    ·
    θ(t) = − ∇ℰY
    X
    (θ(t))
    Gradient flow:
    {θ : h(θ) = h(θ(0))}
    θ(0)
    θ(t)
    −∇ℰ
    Y1
    X1



    Y2
    X2
    Understanding implicit
    bias of gradient descent.
    Applications:
    Helping to prove
    convergence.
    θ(0)
    θ(+∞)
    argmin(ℰY
    X
    )
    3

    View Slide

  7. Independent conservation laws
    hk,k′

    (U, V) = ⟨uk
    , uk′

    ⟩ − ⟨vk
    , vk′


    Linear networks ReLu networks
    σ(s) = max(s,0)
    σ(s) = s
    hk
    (U, V) = ∥uk
    ∥2 − ∥vk
    ∥2
    g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Example: θ = (U, V)
    σ
    σ
    4

    View Slide

  8. Independent conservation laws
    hk,k′

    (U, V) = ⟨uk
    , uk′

    ⟩ − ⟨vk
    , vk′


    Linear networks ReLu networks
    σ(s) = max(s,0)
    σ(s) = s
    hk
    (U, V) = ∥uk
    ∥2 − ∥vk
    ∥2
    g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Example: θ = (U, V)
    σ
    σ
    4
    ℰY
    X
    (u, v) = (uvx − y)2
    1 neuron in 1-D:
    uvx = y
    u2 − v2 = u2
    0
    − v2
    0
    θ(0)
    θ(+∞)

    View Slide

  9. Independent conservation laws
    hk,k′

    (U, V) = ⟨uk
    , uk′

    ⟩ − ⟨vk
    , vk′


    Linear networks ReLu networks
    σ(s) = max(s,0)
    σ(s) = s
    hk
    (U, V) = ∥uk
    ∥2 − ∥vk
    ∥2
    How many? Determine them?
    (h1
    , …, hK
    ) conserved ⟹ Φ(h1
    , …, hK
    ) conserved
    Independence: ∀θ, (∇h1
    (θ), …, ∇hK
    (θ)) are independent
    g(θ, x) := Uσ(V⊤x) = ∑
    k
    uk
    σ(⟨x, vk
    ⟩)
    Example: θ = (U, V)
    σ
    σ
    4
    ℰY
    X
    (u, v) = (uvx − y)2
    1 neuron in 1-D:
    uvx = y
    u2 − v2 = u2
    0
    − v2
    0
    θ(0)
    θ(+∞)

    View Slide

  10. Overview
    Conservation


    laws
    Finding


    conservation laws
    Have we found them all?
    Ferdinand Georg


    Frobenius
    Sophus


    Lie

    View Slide

  11. Structure of the Flow Fields
    ·
    θ(t) = w(θ(t)) where w(θ) ∈ W(θ)
    W(θ) := Span {∇ℰY
    X
    (θ) : ∀X, Y}
    W
    (θ)
    θ(t)
    Flow fields:
    6

    View Slide

  12. {θ : h(θ) = h(θ(0))}
    Structure of the Flow Fields
    ·
    θ(t) = w(θ(t)) where w(θ) ∈ W(θ)
    W(θ) := Span {∇ℰY
    X
    (θ) : ∀X, Y}
    Proposition: h conserved ⇔ ∀θ, ∇h(θ) ⊥ W(θ)
    W
    (θ)
    θ(t)
    Flow fields:
    ∇h(θ)
    6

    View Slide

  13. {θ : h(θ) = h(θ(0))}
    Structure of the Flow Fields
    ·
    θ(t) = w(θ(t)) where w(θ) ∈ W(θ)
    W(θ) := Span {∇ℰY
    X
    (θ) : ∀X, Y}
    Proposition: h conserved ⇔ ∀θ, ∇h(θ) ⊥ W(θ)
    W
    (θ)
    θ(t)
    Flow fields:
    ∇h(θ)
    Span
    y
    ∇ℓ(z, y) = whole space.
    Hypothesis: ℓ(z, y) = ∥z − y∥2
    Example:
    Proposition: W(θ) = Span⋃
    x
    Im[∂θ
    g(θ, x)⊤]
    Question: determining W(θ)
    ∇ℰY
    X
    (θ) =
    1
    N
    N

    i=1
    ∂θ
    g(θ, xi
    )⊤αi
    where αi
    = ∇ℓ(g(θ, xi
    ), yi
    )
    Chain rule:
    6

    View Slide

  14. Minimal Parameterizations
    Re-parameterization: g(θ, x) = f(φ(θ), x)
    should "factor" the invariances.
    φ(θ)
    Linear networks:
    g(θ, x) = UV⊤x
    φ(U, V) = UV⊤
    ReLu networks:
    g(θ, x) = ∑
    i
    ui
    ReLu(⟨vi
    , x⟩)
    = ∑
    i
    1⟨vi
    ,x⟩≥0
    (ui
    v⊤
    i
    )x
    φ(U, V) = (ui
    v⊤
    i
    )i
    (valid only locally)
    7

    View Slide

  15. Minimal Parameterizations
    Re-parameterization: g(θ, x) = f(φ(θ), x)
    should "factor" the invariances.
    φ(θ)
    Linear networks:
    g(θ, x) = UV⊤x
    φ(U, V) = UV⊤
    ReLu networks:
    g(θ, x) = ∑
    i
    ui
    ReLu(⟨vi
    , x⟩)
    = ∑
    i
    1⟨vi
    ,x⟩≥0
    (ui
    v⊤
    i
    )x
    φ(U, V) = (ui
    v⊤
    i
    )i
    (valid only locally)
    7
    W(θ) = Wg
    (θ) := Span⋃x
    Im[∂θ
    g(θ, x)⊤]
    ∂θ
    g(θ, x)⊤ = ∂φ(θ)⊤∂f(φ(θ), x)⊤
    Chain rule:
    = ∂φ(θ)⊤ Span⋃x
    Im[∂θ
    f(θ, x)⊤]
    := Wf
    (θ)

    View Slide

  16. Minimal Parameterizations
    Re-parameterization: g(θ, x) = f(φ(θ), x)
    should "factor" the invariances.
    φ(θ)
    Linear networks:
    g(θ, x) = UV⊤x
    φ(U, V) = UV⊤
    ReLu networks:
    g(θ, x) = ∑
    i
    ui
    ReLu(⟨vi
    , x⟩)
    = ∑
    i
    1⟨vi
    ,x⟩≥0
    (ui
    v⊤
    i
    )x
    φ(U, V) = (ui
    v⊤
    i
    )i
    (valid only locally)
    7
    W(θ) = Wg
    (θ) := Span⋃x
    Im[∂θ
    g(θ, x)⊤]
    ∂θ
    g(θ, x)⊤ = ∂φ(θ)⊤∂f(φ(θ), x)⊤
    Chain rule:
    = ∂φ(θ)⊤ Span⋃x
    Im[∂θ
    f(θ, x)⊤]
    := Wf
    (θ)
    ⟺ W(θ) = Span(∂φ(θ)⊤)
    Finite dimensional set of vector fields

    Definition: is minimal if is the whole space
    φ Wf
    (θ)

    View Slide

  17. Minimal Parameterizations
    Re-parameterization: g(θ, x) = f(φ(θ), x)
    should "factor" the invariances.
    φ(θ)
    Linear networks:
    g(θ, x) = UV⊤x
    φ(U, V) = UV⊤
    ReLu networks:
    g(θ, x) = ∑
    i
    ui
    ReLu(⟨vi
    , x⟩)
    = ∑
    i
    1⟨vi
    ,x⟩≥0
    (ui
    v⊤
    i
    )x
    φ(U, V) = (ui
    v⊤
    i
    )i
    Theorem:
    σ = Id, φ(U, V) = UV
    For
    σ = ReLu, φ(U, V) = (ui
    v⊤
    i
    )i
    are minimal
    (outside a set of 0 measure for ReLu)
    (valid only locally)
    7
    W(θ) = Wg
    (θ) := Span⋃x
    Im[∂θ
    g(θ, x)⊤]
    ∂θ
    g(θ, x)⊤ = ∂φ(θ)⊤∂f(φ(θ), x)⊤
    Chain rule:
    = ∂φ(θ)⊤ Span⋃x
    Im[∂θ
    f(θ, x)⊤]
    := Wf
    (θ)
    ⟺ W(θ) = Span(∂φ(θ)⊤)
    Finite dimensional set of vector fields

    Definition: is minimal if is the whole space
    φ Wf
    (θ)

    View Slide

  18. Constructing Conservation Laws
    Consequence:
    W(θ) = Span(∂φ(θ)⊤)
    h conserved ⇔ ∂φ(θ)∇h(θ) = 0
    Minimal parameterization :
    φ
    W
    (θ)
    θ(t)
    ∇h(θ)
    {θ : h(θ) = h(θ(0))}
    8

    View Slide

  19. Constructing Conservation Laws
    Consequence:
    W(θ) = Span(∂φ(θ)⊤)
    h conserved ⇔ ∂φ(θ)∇h(θ) = 0
    Minimal parameterization :
    φ
    W
    (θ)
    θ(t)
    ∇h(θ)
    {θ : h(θ) = h(θ(0))}
    φ(u, v) = uv⊤
    W(u, v) = Span
    M
    {(Mv, M⊤u)}
    ∂φ(u, v)⊤ : M ↦ (Mv, M⊤u)
    h conserved ⇔ ∀M, ⟨∇u
    h(u, v), Mv⟩ + ⟨∇v
    h(u, v), M⊤v⟩ = 0
    ⇔ ∇u
    h(u, v)v⊤ + u∇v
    h(u, v)⊤ = 0
    Example: single neuron
    Only solutions: h(u, v) = Φ(∥u∥2 − ∥v∥2)
    8

    View Slide

  20. Constructing Conservation Laws
    Consequence:
    W(θ) = Span(∂φ(θ)⊤)
    h conserved ⇔ ∂φ(θ)∇h(θ) = 0
    Minimal parameterization :
    φ
    W
    (θ)
    θ(t)
    ∇h(θ)
    {θ : h(θ) = h(θ(0))}
    φ(u, v) = uv⊤
    W(u, v) = Span
    M
    {(Mv, M⊤u)}
    ∂φ(u, v)⊤ : M ↦ (Mv, M⊤u)
    h conserved ⇔ ∀M, ⟨∇u
    h(u, v), Mv⟩ + ⟨∇v
    h(u, v), M⊤v⟩ = 0
    ⇔ ∇u
    h(u, v)v⊤ + u∇v
    h(u, v)⊤ = 0
    Example: single neuron
    Only solutions: h(u, v) = Φ(∥u∥2 − ∥v∥2)
    8
    For a polynomial , restricting the


    search to fixed degree polynomials :
    φ
    h
    finite dimensional linear kernel.

    View Slide

  21. Overview
    Conservation


    laws
    Finding


    conservation laws
    Have we found them all?
    Ferdinand Georg


    Frobenius
    Sophus


    Lie

    View Slide

  22. Did we found all the conservation laws?
    Question: find a "minimal" surface tangent to all .
    Σ W(θ)
    Issue: in general, impossible!
    dim(Σ) = dim(W(θ))
    Σ
    W(θ)
    θ(t)
    10

    View Slide

  23. Did we found all the conservation laws?
    Question: find a "minimal" surface tangent to all .
    Σ W(θ)
    Issue: in general, impossible!
    dim(Σ) = dim(W(θ))
    Definition: Lie brackets
    [w1
    , w2
    ](θ) := ∂w1
    (θ)w2
    (θ) − ∂w2
    (θ)w1
    (θ)
    ·
    θ =
    w2
    (θ)
    ·
    θ
    =
    w
    1 (θ)
    if
    = [w1
    , w2
    ] = 0
    Σ
    W(θ)
    θ(t)
    10

    View Slide

  24. Did we found all the conservation laws?
    Question: find a "minimal" surface tangent to all .
    Σ W(θ)
    Issue: in general, impossible!
    dim(Σ) = dim(W(θ))
    Definition: Lie brackets
    [w1
    , w2
    ](θ) := ∂w1
    (θ)w2
    (θ) − ∂w2
    (θ)w1
    (θ)
    ·
    θ =
    w2
    (θ)
    ·
    θ
    =
    w
    1 (θ)
    if
    = [w1
    , w2
    ] = 0
    Σ
    W(θ)
    θ(t)
    Theorem:
    and ∀(i, j), [wi
    , wj
    ](θ) ∈ W(θ)
    then there exists with .
    Σ dim(Σ) = dim(W(θ))
    If W(θ) = Span(wi
    (θ))i
    Ferdinand Georg


    Frobenius
    10

    View Slide

  25. Did we found all the conservation laws?
    Question: find a "minimal" surface tangent to all .
    Σ W(θ)
    Issue: in general, impossible!
    dim(Σ) = dim(W(θ))
    Definition: Lie brackets
    [w1
    , w2
    ](θ) := ∂w1
    (θ)w2
    (θ) − ∂w2
    (θ)w1
    (θ)
    ·
    θ =
    w2
    (θ)
    ·
    θ
    =
    w
    1 (θ)
    if
    = [w1
    , w2
    ] = 0
    Σ
    W(θ)
    θ(t)
    [wi
    , wj
    ](θ) ∉ W(θ)
    Linear networks
    ReLu networks
    [wi
    , wj
    ](θ) ∈ W(θ)
    Theorem:
    and ∀(i, j), [wi
    , wj
    ](θ) ∈ W(θ)
    then there exists with .
    Σ dim(Σ) = dim(W(θ))
    If W(θ) = Span(wi
    (θ))i
    Ferdinand Georg


    Frobenius
    10

    View Slide

  26. Did we found all the conservation laws?
    Question: find a "minimal" surface tangent to all .
    Σ W(θ)
    Issue: in general, impossible!
    dim(Σ) = dim(W(θ))
    Definition: Generated Lie algebra :
    W∞
    W0
    (θ) = W(θ) Wk+1
    = Span([W0
    , Wk
    ] ⊕ Wk
    )
    Definition: Lie brackets
    [w1
    , w2
    ](θ) := ∂w1
    (θ)w2
    (θ) − ∂w2
    (θ)w1
    (θ)
    ·
    θ =
    w2
    (θ)
    ·
    θ
    =
    w
    1 (θ)
    if
    = [w1
    , w2
    ] = 0
    Σ
    W(θ)
    θ(t)
    [wi
    , wj
    ](θ) ∉ W(θ)
    Linear networks
    ReLu networks
    [wi
    , wj
    ](θ) ∈ W(θ)
    Theorem:
    and ∀(i, j), [wi
    , wj
    ](θ) ∈ W(θ)
    then there exists with .
    Σ dim(Σ) = dim(W(θ))
    If W(θ) = Span(wi
    (θ))i
    Ferdinand Georg


    Frobenius
    Sophus


    Lie 10

    View Slide

  27. Number of Conservation Laws
    Theorem: if is locally constant,
    dim(W∞
    (θ)) = K
    there are exactly independent conservation laws.
    d − K
    ReLu networks Linear networks
    φ(U, V) = UV⊤
    φ(U, V) = (ui
    v⊤
    i
    )i
    φ(u, v) = uv⊤
    separability
    11
    φ : (U, V) ∈ ℝn×r × ℝm×r ↦ UV⊤ Assuming has full rank .
    (U; V) ∈ ℝ(n+m)×r r

    View Slide

  28. Number of Conservation Laws
    Theorem: if is locally constant,
    dim(W∞
    (θ)) = K
    there are exactly independent conservation laws.
    d − K
    ReLu networks Linear networks
    φ(U, V) = UV⊤
    φ(U, V) = (ui
    v⊤
    i
    )i
    φ(u, v) = uv⊤
    separability
    11
    φ : (U, V) ∈ ℝn×r × ℝm×r ↦ UV⊤ Assuming has full rank .
    (U; V) ∈ ℝ(n+m)×r r
    Proposition: given , one has
    W0
    (θ) = Span(∂φ(θ)⊤)
    W0
    ⊊ W1
    = Span([W0
    , W0
    ] ⊕ W0
    )
    W1
    = W2
    = Span([W0
    , W1
    ] ⊕ W1
    ) = W3
    = … = W∞
    Explicit formula,
    dim(V∞
    ) =
    (n + m)r − r(r + 1)/2

    View Slide

  29. Number of Conservation Laws
    Theorem: if is locally constant,
    dim(W∞
    (θ)) = K
    there are exactly independent conservation laws.
    d − K
    ReLu networks Linear networks
    φ(U, V) = UV⊤
    φ(U, V) = (ui
    v⊤
    i
    )i
    φ(u, v) = uv⊤
    separability
    Proposition: hk,k′

    (U, V) = ⟨uk
    , uk′

    ⟩ − ⟨vk
    , vk′


    define independent conservations laws.
    r(r + 1)/2
    Corollary: for ReLu and linear networks, no other conservation laws.
    11
    φ : (U, V) ∈ ℝn×r × ℝm×r ↦ UV⊤ Assuming has full rank .
    (U; V) ∈ ℝ(n+m)×r r
    Proposition: given , one has
    W0
    (θ) = Span(∂φ(θ)⊤)
    W0
    ⊊ W1
    = Span([W0
    , W0
    ] ⊕ W0
    )
    W1
    = W2
    = Span([W0
    , W1
    ] ⊕ W1
    ) = W3
    = … = W∞
    Explicit formula,
    dim(V∞
    ) =
    (n + m)r − r(r + 1)/2

    View Slide

  30. Conclusion
    Deeper networks: no minimal
    parameterization valid for almost all .
    θ
    For some , there exists


    new conservation laws.
    → θ(0)
    https://github.com/sibyllema/Conservation_laws
    is infinite dimensional,


    SageMath code to compute
    → W∞
    W∞
    (θ)
    AABE5nictVzbchu5EYU3t41z8yaPeZmN1ilvyuvIjnOp2krV2qIsa621ZZOSvWvaLg45omiPODSHpC9c/UIqL6lU8pQ/yXfkA1KVPOUX0hdggCEx0xjF8ZQkDAanu9EDNLobGMeTdJTPNjf/ce69b3zzW9/+zvvfPf+97//ghz+68MGPD/NsPu0nB/0szaaP4l6epKNxcjAbzdLk0WSa9E7iNHkYv9jC5w8XyTQfZePO7M0keXLSG45HR6N+bwZVh910kM3yZxc2Nq9s0r9ovXBVFzaU/refffDhP1VXDVSm+mquTlSixmoG5VT1VA7XY3VVbaoJ1D1RS6ibQmlEzxN1qs4Ddg6tEmjRg9oX8HsId4917RjukWZO6D5wSeFnCshIXQRMBu2mUEZuET2fE2WsraK9JJoo2xv4G2taJ1A7U8dQK+FMy1Ac9mWmjtTvqA8j6NOEarB3fU1lTlpBySOnVzOgMIE6LA/g+RTKfUIaPUeEyanvqNsePf8XtcRavO/rtnP1b5LyIlyRauveZwWFnloQ/Yje5hyesTwpcB4ChUT3EUuvSNcn1PsxtF9C/V24TqlkdBLDtaTa01rkFlw+5JaI3IHLh9wRkXtw+ZB7InIfLh9yXyMROyWd+/FtuHz4tsj5Plw+5H0R+QAuH/KBiDyEy4c8FJFfweVDfiUib8HlQ94SkXfg8iHviMgOXD5kR0QewOVDHojIbbh8yG2NrJ6pU7gyojMSZuUNKJd5oKVIoeaGKN9Nso4+7M2AOd2vwMqzugV//dhWgE6TCux2wLg7qsDKI28HbKQfK9ui27Sa+LC3RewujAA/dlfEfq6eV2A/D5hpLyqw8lzbg3Z+rGx9v4A7P/YLEXsXSn6svEbdgxo/9l7AijGpwO6L2PvqZQU2xOpPK7Cy3W+DXfFj5XWqA+392BBrOq/Ayvb0EDwYP1ZerR5CrR/7UMQ+Uq8rsI9E7Jdg3f3YLwNW2LcVWLPGnqcVZEj+SAIzto5ar5iVWJoAtZ7APy3WlpR84xjqJcywwAwJcyIidgrETiBir0DsBcuVF3Y0J39X5tIuEO1ARFysTViaie0HRXsspQGIVoForSDqPFJ816YvC/IuTI2EnBUrF5ZC+pQV9htLiR4P9ZbXIO6VEDy2j2nkX6ZoCSMo1FQdteNijWdkRPd1iFcUvZleGh4yblZYBRf1WkTFHlQsot54UG9E1NyDmouohQe1EFF25ru4bsAIsPrHd7GkOx4B7CNXXxF4BTdg1bkNczSC8bMPXuADqrkHf9sUe0tXnWQYzeM6iVmOJyVLPIXSUm1AvY0KWxRfpzTDEpCMW97TMT7eYW5jqeccW+HTYiWPioxJOJ0RyTMs6KC3GNF8akbnDtWcknfHpWb428W8N6Vm+G3S+Cl58Vxqhp9p6WdnkL2jsZ0zYNswmyZa+7bclAbnX5iGKZ+nVRctLr7VEz1mkN7rhvR39ZvZPcN72aIS68eWm9HInf7lpf41oWH1nDt6bkYFvSf2ek0patyTsY57bbmpDBmtomMth71r+mawzUC/GVNuRmMfPK4tirmXTrnp6J0UvbHlZjQOFec9T8mTN+VmNIZ0z/qw5WY0MNvS03G+LTe17KgBjp1tualVH1MWGHNAPOa5xnpFU/KT5praiPyD+myN6/Ovr2OYs3laxAj1lKxvW00nLtayeomMv5CAVZs1lAP9i7njg5VpLNU1Mb5iGWal9X2djl3jUfN7oMUIZj/vAUg58xQkNDkJtN4pULwqRl3lnhncNRGHo+RoBdXVtTPRW7R8OWtUrntGtVJcZntr9dgle53T2JuQT7hHmpX0sFf5hqsoShraK2lIptdEd2/1fC1rf1PETVYQk2Kk9WlHiHfS6uNUn9bbjo4v6l2eGVy852PHL2abj7S1wZgnI1uEstTxdNuZPJJbh+vqZWVz3PwsojeK9mpBVmNEO1K5GIWabDF740u6t7QPaE8OeTCNPrzHSFOZKN41wyw65tMjsqiuvZV4o75Mho7LOVldY4/r0UMHPfSgm8c4W7Bi3IVSB2KGA7jrBEQ55wtdZaTxqfqk2B3N6A3WR/RpyUIaGmxvkpKFrIuyj0tUXgEaRwNH6eE0VukYfHeNkhz1++SxsWvZ8l+knVuzv92jMV49mqszMQPieo24RjRreFeX71Y5sARL75Nr5L/W9xL5NeGINlTi+tThzHoZ045/QhHshDzjlGabNDvKrd381OoTw2lfmb1z3M3OyEJGZP8iWJ8yGpMR/bhnB8wOOluElGxkiN0ZFd6Nz9cZiWPM+nEjxaca7HhLyJbNib+h686unMYiRwy8DpyujG2jkz3yBRPiOtXW3c7t+tUHkfachDtKmKIdK5eI/8f02/yYcbKxNiJQw/gGcm3rfO8jo5gFddSjVb7eBpm2rpQfFTI81VLb9c/K9FFJshZFXCgPrtYD4Nyne+aFo2RKcudrbXgdrcvmIuXJih6xt0cUxbPdH+oVGOW+TKvkBs25Lo2SIYyCWRFFmLZSFnmVbz2vMvUw2vn/hbrVdVlrSDFSNoPLGpLy+wlFa66UKYxqHr8vaDb5tT5daVXPZ0xj8cSZy19D7Yfw28ht7sPoxCWrcJPGAFOwd1YjXBOttQjjdbPEy4xMQ8veW352TJpWbs1Z4mu2bjbGXjSmsk+j5rXOWpjyWWg8d2g8D9Rhh/YarRZNvbFEz8TYoqN3K0P5NeHWaUB5LlKWPTKDGgVI6cZSYVQHIlU5xjeotyKtTZFWD2aruxvgzvkQpH+ur87ur4vVPVK3yLfpkwfG8cuAZumIfC5TWx+pMQXkfF3bV3f2d6kGucdkQZEyn+PEGcO7Tn26TgtJf65XtozsvLUI5tzSK93G2NgulX+1hjyhOZHTvDSI69Qi0fK7ckQrFumK43NElPnvkU/Ffkd9zOy2tu8kKvkTNt7kWWV5caQwJv1Lmbfdteh114lfI4oJ59q7joFW8zeMFBhjMgl+zzKnN4SrHO8ksEcbk/1ct1O8izd2JLpCUi/V7wNsDEe9dqy7Y8v02PTtF9AStW7fuq+FzC8N5ijxO8uOXo9WtRPtoy5X7s9Gq6dXufJ9nR7mK3ytPubUxo0sbJRXxnTVp8FcWKJmXBgTwqVZL5rI30zyJjLz7lQoZdPaUC5nGtjGHFO8JJ0DRYTPu7vk9eY+FvoRr9GLCetS4xqJEmbjMp0fcC0tZqWilQjJrZfWpNRZj6rWC8vDXTWsHWdLmZAVTJWUu+HWbh+6pWhFzsYwhb7ik71VcaJL81O48HekfFGi4RiSQ2yDn3tDbantd3Aq4qUuc2Yzohq0CYOVGLyn+1luUa+jlw51l34Ih3AeI9C1JP2IVtSmsjNlWXKXejj9V2QNpioRpbctm/fB5SL3ZJ1Tk/6MyMLJvRkp801O074YDiE9KXMJ58P7G1IvjpT5tqlZHwx1uQdlDk14mPMMYe/ctm7Oy+VUr691LqE8eB0wOy8GhzuA1TGLbRdioabOG3n3HNA6HNVQN6vF/9oPw8dyas4rlFtO35w9D3jr3C7RmVn0i5vPGcstZDRXcwznmRW9s16Tnx/7f1GjN5U5vXn39NEvtWPA8FoqzofK0jHeHUVW3lAquD/gkyFT/1F/Pyd/lfCyoFElRxNKZr+impppIVMzX176emeehchk6VTJVKZm44k2nYzdUrvqFvxsFR5g01Oi/E0l/0Ws/zvaAdQekfUw2XTOIHSpLqEsiN1NG9C9PUdbJTGe6eUzvh2owT3xParF8753qT2e+e2U+lb9JQnP9S9UpgalyGR1l8/Oqxh6UN6B41yQ+d43ojP1nM3iE2gnAXuMfI6KIyXz9fOSEAOKC1clXRLCjJY6yrGXckxnkpIK2nGpb30a4RO904/7Dng+v1dklyL1S6rr6dUBV2pJqn2PVI8pMxCT/jchQvu1ugx/L+uyX9L9NUlzegdliV47z+pPgp16x4X9mvEi5cFMpm6h22UU1dvdw/pMbKuSC594r8cPa/BDR8o2va0XFHdPVX3ucF5Dc65lcvdzx8rkPVkPGM32ivFRHz8vangtAvp/pxJ9x5F0B2SJKdse0X7elOilWjfbJD2fq6zP296ukdZ8tck07clKOw7MGcn6PYFUj7vq2c/nIKVcTVJBx53rfCJTOi0y8lKS5+ck4DREL6C3cl9DeipRmYuSzAO+RF4EyLIIoHMkSHMkUhiKkmj78OzCxtXV/+tjvXB47crV31y5fv/6xmc39f8D8r76qfqZugRr32/VZzD+99UBcHqu/qj+ov7aOm79ofWn1p+56XvnNOYnqvSv9bf/AjRlQhk=
    . . .

    View Slide

  31. Conclusion
    Deeper networks: no minimal
    parameterization valid for almost all .
    θ
    For some , there exists


    new conservation laws.
    → θ(0)
    https://github.com/sibyllema/Conservation_laws
    is infinite dimensional,


    SageMath code to compute
    → W∞
    W∞
    (θ)
    AABE5nictVzbchu5EYU3t41z8yaPeZmN1ilvyuvIjnOp2krV2qIsa621ZZOSvWvaLg45omiPODSHpC9c/UIqL6lU8pQ/yXfkA1KVPOUX0hdggCEx0xjF8ZQkDAanu9EDNLobGMeTdJTPNjf/ce69b3zzW9/+zvvfPf+97//ghz+68MGPD/NsPu0nB/0szaaP4l6epKNxcjAbzdLk0WSa9E7iNHkYv9jC5w8XyTQfZePO7M0keXLSG45HR6N+bwZVh910kM3yZxc2Nq9s0r9ovXBVFzaU/refffDhP1VXDVSm+mquTlSixmoG5VT1VA7XY3VVbaoJ1D1RS6ibQmlEzxN1qs4Ddg6tEmjRg9oX8HsId4917RjukWZO6D5wSeFnCshIXQRMBu2mUEZuET2fE2WsraK9JJoo2xv4G2taJ1A7U8dQK+FMy1Ac9mWmjtTvqA8j6NOEarB3fU1lTlpBySOnVzOgMIE6LA/g+RTKfUIaPUeEyanvqNsePf8XtcRavO/rtnP1b5LyIlyRauveZwWFnloQ/Yje5hyesTwpcB4ChUT3EUuvSNcn1PsxtF9C/V24TqlkdBLDtaTa01rkFlw+5JaI3IHLh9wRkXtw+ZB7InIfLh9yXyMROyWd+/FtuHz4tsj5Plw+5H0R+QAuH/KBiDyEy4c8FJFfweVDfiUib8HlQ94SkXfg8iHviMgOXD5kR0QewOVDHojIbbh8yG2NrJ6pU7gyojMSZuUNKJd5oKVIoeaGKN9Nso4+7M2AOd2vwMqzugV//dhWgE6TCux2wLg7qsDKI28HbKQfK9ui27Sa+LC3RewujAA/dlfEfq6eV2A/D5hpLyqw8lzbg3Z+rGx9v4A7P/YLEXsXSn6svEbdgxo/9l7AijGpwO6L2PvqZQU2xOpPK7Cy3W+DXfFj5XWqA+392BBrOq/Ayvb0EDwYP1ZerR5CrR/7UMQ+Uq8rsI9E7Jdg3f3YLwNW2LcVWLPGnqcVZEj+SAIzto5ar5iVWJoAtZ7APy3WlpR84xjqJcywwAwJcyIidgrETiBir0DsBcuVF3Y0J39X5tIuEO1ARFysTViaie0HRXsspQGIVoForSDqPFJ816YvC/IuTI2EnBUrF5ZC+pQV9htLiR4P9ZbXIO6VEDy2j2nkX6ZoCSMo1FQdteNijWdkRPd1iFcUvZleGh4yblZYBRf1WkTFHlQsot54UG9E1NyDmouohQe1EFF25ru4bsAIsPrHd7GkOx4B7CNXXxF4BTdg1bkNczSC8bMPXuADqrkHf9sUe0tXnWQYzeM6iVmOJyVLPIXSUm1AvY0KWxRfpzTDEpCMW97TMT7eYW5jqeccW+HTYiWPioxJOJ0RyTMs6KC3GNF8akbnDtWcknfHpWb428W8N6Vm+G3S+Cl58Vxqhp9p6WdnkL2jsZ0zYNswmyZa+7bclAbnX5iGKZ+nVRctLr7VEz1mkN7rhvR39ZvZPcN72aIS68eWm9HInf7lpf41oWH1nDt6bkYFvSf2ek0patyTsY57bbmpDBmtomMth71r+mawzUC/GVNuRmMfPK4tirmXTrnp6J0UvbHlZjQOFec9T8mTN+VmNIZ0z/qw5WY0MNvS03G+LTe17KgBjp1tualVH1MWGHNAPOa5xnpFU/KT5praiPyD+myN6/Ovr2OYs3laxAj1lKxvW00nLtayeomMv5CAVZs1lAP9i7njg5VpLNU1Mb5iGWal9X2djl3jUfN7oMUIZj/vAUg58xQkNDkJtN4pULwqRl3lnhncNRGHo+RoBdXVtTPRW7R8OWtUrntGtVJcZntr9dgle53T2JuQT7hHmpX0sFf5hqsoShraK2lIptdEd2/1fC1rf1PETVYQk2Kk9WlHiHfS6uNUn9bbjo4v6l2eGVy852PHL2abj7S1wZgnI1uEstTxdNuZPJJbh+vqZWVz3PwsojeK9mpBVmNEO1K5GIWabDF740u6t7QPaE8OeTCNPrzHSFOZKN41wyw65tMjsqiuvZV4o75Mho7LOVldY4/r0UMHPfSgm8c4W7Bi3IVSB2KGA7jrBEQ55wtdZaTxqfqk2B3N6A3WR/RpyUIaGmxvkpKFrIuyj0tUXgEaRwNH6eE0VukYfHeNkhz1++SxsWvZ8l+knVuzv92jMV49mqszMQPieo24RjRreFeX71Y5sARL75Nr5L/W9xL5NeGINlTi+tThzHoZ045/QhHshDzjlGabNDvKrd381OoTw2lfmb1z3M3OyEJGZP8iWJ8yGpMR/bhnB8wOOluElGxkiN0ZFd6Nz9cZiWPM+nEjxaca7HhLyJbNib+h686unMYiRwy8DpyujG2jkz3yBRPiOtXW3c7t+tUHkfachDtKmKIdK5eI/8f02/yYcbKxNiJQw/gGcm3rfO8jo5gFddSjVb7eBpm2rpQfFTI81VLb9c/K9FFJshZFXCgPrtYD4Nyne+aFo2RKcudrbXgdrcvmIuXJih6xt0cUxbPdH+oVGOW+TKvkBs25Lo2SIYyCWRFFmLZSFnmVbz2vMvUw2vn/hbrVdVlrSDFSNoPLGpLy+wlFa66UKYxqHr8vaDb5tT5daVXPZ0xj8cSZy19D7Yfw28ht7sPoxCWrcJPGAFOwd1YjXBOttQjjdbPEy4xMQ8veW352TJpWbs1Z4mu2bjbGXjSmsk+j5rXOWpjyWWg8d2g8D9Rhh/YarRZNvbFEz8TYoqN3K0P5NeHWaUB5LlKWPTKDGgVI6cZSYVQHIlU5xjeotyKtTZFWD2aruxvgzvkQpH+ur87ur4vVPVK3yLfpkwfG8cuAZumIfC5TWx+pMQXkfF3bV3f2d6kGucdkQZEyn+PEGcO7Tn26TgtJf65XtozsvLUI5tzSK93G2NgulX+1hjyhOZHTvDSI69Qi0fK7ckQrFumK43NElPnvkU/Ffkd9zOy2tu8kKvkTNt7kWWV5caQwJv1Lmbfdteh114lfI4oJ59q7joFW8zeMFBhjMgl+zzKnN4SrHO8ksEcbk/1ct1O8izd2JLpCUi/V7wNsDEe9dqy7Y8v02PTtF9AStW7fuq+FzC8N5ijxO8uOXo9WtRPtoy5X7s9Gq6dXufJ9nR7mK3ytPubUxo0sbJRXxnTVp8FcWKJmXBgTwqVZL5rI30zyJjLz7lQoZdPaUC5nGtjGHFO8JJ0DRYTPu7vk9eY+FvoRr9GLCetS4xqJEmbjMp0fcC0tZqWilQjJrZfWpNRZj6rWC8vDXTWsHWdLmZAVTJWUu+HWbh+6pWhFzsYwhb7ik71VcaJL81O48HekfFGi4RiSQ2yDn3tDbantd3Aq4qUuc2Yzohq0CYOVGLyn+1luUa+jlw51l34Ih3AeI9C1JP2IVtSmsjNlWXKXejj9V2QNpioRpbctm/fB5SL3ZJ1Tk/6MyMLJvRkp801O074YDiE9KXMJ58P7G1IvjpT5tqlZHwx1uQdlDk14mPMMYe/ctm7Oy+VUr691LqE8eB0wOy8GhzuA1TGLbRdioabOG3n3HNA6HNVQN6vF/9oPw8dyas4rlFtO35w9D3jr3C7RmVn0i5vPGcstZDRXcwznmRW9s16Tnx/7f1GjN5U5vXn39NEvtWPA8FoqzofK0jHeHUVW3lAquD/gkyFT/1F/Pyd/lfCyoFElRxNKZr+impppIVMzX176emeehchk6VTJVKZm44k2nYzdUrvqFvxsFR5g01Oi/E0l/0Ws/zvaAdQekfUw2XTOIHSpLqEsiN1NG9C9PUdbJTGe6eUzvh2owT3xParF8753qT2e+e2U+lb9JQnP9S9UpgalyGR1l8/Oqxh6UN6B41yQ+d43ojP1nM3iE2gnAXuMfI6KIyXz9fOSEAOKC1clXRLCjJY6yrGXckxnkpIK2nGpb30a4RO904/7Dng+v1dklyL1S6rr6dUBV2pJqn2PVI8pMxCT/jchQvu1ugx/L+uyX9L9NUlzegdliV47z+pPgp16x4X9mvEi5cFMpm6h22UU1dvdw/pMbKuSC594r8cPa/BDR8o2va0XFHdPVX3ucF5Dc65lcvdzx8rkPVkPGM32ivFRHz8vangtAvp/pxJ9x5F0B2SJKdse0X7elOilWjfbJD2fq6zP296ukdZ8tck07clKOw7MGcn6PYFUj7vq2c/nIKVcTVJBx53rfCJTOi0y8lKS5+ck4DREL6C3cl9DeipRmYuSzAO+RF4EyLIIoHMkSHMkUhiKkmj78OzCxtXV/+tjvXB47crV31y5fv/6xmc39f8D8r76qfqZugRr32/VZzD+99UBcHqu/qj+ov7aOm79ofWn1p+56XvnNOYnqvSv9bf/AjRlQhk=
    . . .
    Extensions:
    Max-pooling
    Convolution
    Skip connexions
    Optimization with momentum
    Discrete gradient descent

    View Slide