Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ・コミュニケーションツールとしてのExploratoryの活用法
Search
Ikuya Murasato
November 12, 2021
Business
0
340
データ・コミュニケーションツールとしてのExploratoryの活用法
2021/11/12(金)に開催したExploratory データサイエンス勉強会#21の株式会社リクルート様のご登壇資料です。
Ikuya Murasato
November 12, 2021
Tweet
Share
More Decks by Ikuya Murasato
See All by Ikuya Murasato
トピックモデル分析を活用した問合せ業務の効率化
ikuyam
1
200
回帰分析の活用による新商品の販売力予測
ikuyam
0
140
生存分析モデルを利用したLineのブロック要因分析
ikuyam
0
93
自動車トラブルと気象条件などの探索的データ分析
ikuyam
0
63
データサイエンス「も」使えるチェンジメーカー輩出への挑戦
ikuyam
0
340
ExploratoryとRによる全学データサイエンス教育
ikuyam
0
470
エンゲージメント向上のための人事制度改革 - 管理部門におけるExploratoryの活用
ikuyam
0
1.5k
「学ぶ」分析技術から「使う」分析技術へ - Exploratoryによるドリル演習
ikuyam
0
350
データサイエンス入門教育の現場から - 46歳新任教員2年間の苦闘
ikuyam
0
440
Other Decks in Business
See All in Business
情報整理ゲーム「野球のポジション当てゲーム カード版」
chibanba1982
PRO
0
1k
ゲーム型ダイバーシティ&インクルージョン研修「バーンガ」
chibanba1982
PRO
0
770
フォロワーシップ、ビジョン共有の重要性を学べる「部課長ゲームオンライン」
chibanba1982
PRO
0
400
recruiting_guide
kakaojapan
0
83k
コンセンサスゲーム「NASAゲーム カード版」
chibanba1982
PRO
0
1.9k
財務会計を楽しく学べるビジネスゲーム「財務の虎」
chibanba1982
PRO
0
470
アマチュア技術広報の振り返りと目標
bicstone
2
150
enechain company deck
enechain
PRO
8
96k
プログラミング疑似体験ゲーム「フローチャートパズル」
chibanba1982
PRO
0
140
akippa株式会社 - 会社紹介資料
akippa
4
61k
【キャリア採用】BuySell Technologies会社説明資料
buyselltechnologies
2
80k
システム思考ゲーム「ビールゲーム」
chibanba1982
PRO
0
470
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
960
RailsConf 2023
tenderlove
29
970
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
A better future with KSS
kneath
238
17k
What's in a price? How to price your products and services
michaelherold
244
12k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
Six Lessons from altMBA
skipperchong
27
3.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Transcript
データ・コミュニケーションツール としてのExploratory活用法 株式会社リクルート まなびデータソリューション部 後藤真理絵
❖ 自己紹介 ❖ 会社紹介・業務の背景 ❖ ビジネス課題 ❖ 活用機能 ❖ 効果
アジェンダ
自己紹介
大学時代 社会人1−2年 社会人3-10年 社会人10年〜 慶應SFC デザイン思考 エスノグラフィ Flashプログラミング Web広告制作会社 ディレクター見習い
プロジェクト進行管理 マーケティングリサーチ会社 <データ収集> ・文献、各種統計情報 ・Webアンケート ・インタビュー調査 ・有識者インタビュー ・ビジネスエスノグラフィ <分析・報告> ・多変量解析、マイニング ・顧客向け報告会 ヤフー株式会社 <広告効果分析> ・広告効果分析 ・全社マーケティング最適化 <サービス利用状況分析> ・既存サービス分析支援 ・新規サービス立ち上げ伴走 2020〜 株式会社リクルート 『スタディサプリ』 サービス利用状況分析 自己紹介
大学時代 社会人1−2年 社会人3-10年 社会人10年〜 慶應SFC デザイン思考 エスノグラフィ Flashプログラミング Web広告制作会社 ディレクター見習い
プロジェクト進行管理 マーケティングリサーチ会社 <データ収集> ・文献、各種統計情報 ・Webアンケート ・インタビュー調査 ・有識者インタビュー ・ビジネスエスノグラフィ <分析・報告> ・多変量解析、マイニング ・顧客向け報告会 自己紹介 クリエイティブ系に憧れていた時期 営業・調査・分析の基礎 データサイエンスな世界 ヤフー株式会社 <広告効果分析> ・広告効果分析 ・全社マーケティング最適化 <サービス利用状況分析> ・既存サービス分析支援 ・新規サービス立ち上げ伴走 2020〜 株式会社リクルート 『スタディサプリ』 サービス利用状況分析
弊社のご紹介
スタディサプリ https://studysapuri.jp/
日本 インドネシア フィリピン 対象学年 小・中学校 高校 大学・社会人 高校 高校 オンラインビデオ
(B to C) オンラインビデオ& アセスメント (B to B to C) オンラインコーチング 各国で様々なサービスラインナップにて事業展開をしています パーソナルコーチプラン サービスラインナップ 広報資料より
営業 学校・先生 (クライアント) 生徒 (カスタマー) 年単位で導入・活用支援を行うコンサル型営業スタイル
2020年に直面したビジネス課題
学校の一斉休校 2020年3月
『スタディサプリ』のニーズが急上昇
顧客接点の数 = フォローする先生の人数 × 学校数
データでどう解決するか?
求められていたゴール • 合格点の対応品質の担保 • 継続率の維持
ソリューション • どの学校に優先フォローをすればいいかわかる • 瞬間理解できる • 誰が見ても納得できる 学校ごとの継続可能性を予測し、必要なフォロー内容を データからサジェストする
データ活用面での課題
乗り越えるべき壁 時間的制約 短期間でデータをかき集め、予測モデルを作るため、 試行錯誤期間が限られている 精度<明瞭 精度よりもわかりやすさ。誰もが瞬間で理解でき、 解釈の余地がないアウトプット 用途ドリブン 営業が納得感を持ち、アクションが打てるものに しなければならない
ドメイン知識の習得 ・業務フローの理解 ・事業課題の把握 初期問題定義 ・目的、ゴール ・前提条件の整理 ・実施する範囲の設定 データ調査&収集 ・ユーザー利用データ ・マーケティングデータ
・売上データ ・オープンデータ 現状把握分析 ・基礎統計 ・ユーザー利用状況 ・目的変数との関連性 ・企画者とのすり合わせ 問題定義完了 予測モデル検討 ・予測アルゴリズム選定 ・特徴量エンジアリング ・データセット追加 ・予測モデルでの 変数重要度算出 ・評価方法 ・予測結果のアウトプッ ト イメージ ・企画者とのすり合わせ ・予測モデル ブラッシュアップ ・データ追加 ・システム実装 ・システムリリース ・エンドユーザーへの コミュニケーション &フォローアップ 企画・構想 現状調査 施策検討 施策実装 リリース 必要な対応策 プロジェクト運営プロセス(一例) ここを特に綿密にやる
対応手段 ➢ 問題定義に関係者全員が関わり、ブレない方針を策定した ➢ 営業現場の人を巻き込み、データ分析でビジネス現場の状 況と課題を共有(営業とデータ人材の視点を揃える) ➢ 営業ヒアリングとデータ観点から、特徴量を選定(データ チーム内でも目線を揃える)
Exploratoryの利用
インプットデータの修正をしても 即、読み込める データインプット時
データインプット時 DBにない関連データもクラウド上 から取り込んで可視化
データチェック・クレンジング • データの質(欠損値、ばらつき)の確認 • かき集めたデータで予測できそうか一次確認
• サマリーデータから特に重要視しているデータにフォーカ スし、継続率への影響がありそうかを確認 データチェック・クレンジング
データに基づく議論 • 予測に特に影響してそうな特徴量候補のデータを、様々な 角度から検証(実数、割合、分布、クロス集計など)
手元での予測モデル作成 • 不均衡データの調整 • 全体サマリで一定の傾向が見えた特徴量を入れて予測 • 新たな特徴量をステップで作成 • 分岐の納得性を確認
手元での予測モデル作成 • 精度指標、変数重要度を確認 • 不必要なもの、アンコントローラブルなものは抜いて 精度にどう影響するかを試行錯誤
効果
データにフォーカスした議論によりスピーディーに進捗 時間的制約 PJチーム全体でシャープな問題定義ができた。モデル 構築や精度検証を早いサイクルで回せた。 精度<明瞭 データ可視化を通じて営業現場との壁打ちが可能に。 様々な現場の「肌感」を共有してもらえた 用途ドリブン 現場の声を取り入れたモノづくりができた。 シンプルなソリューション提供で、施策にすぐ直結。
次年度に向けた重要な知見も得られる結果に 定量 ・リピート率の維持 ・事業への貢献 定性 ・予測結果に関する質問から改善点の抽出 ・現場の「肌感」を表すデータの不足認識と収集対策
まとめ ➢ 現場の「肌感」を可視化結果に基づき引き出す ➢ PJメンバーとデータにフォーカスした議論を重ねる ➢ 時間的・データ的制約がある中で、問題定義を精度高く実施 すぐに有効活用されたことで、事業に貢献