Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
小学2年生の問題を解く電脳優子2年生・デモ
Search
自然言語処理研究室
March 31, 2005
Research
0
73
小学2年生の問題を解く電脳優子2年生・デモ
自然言語処理研究室
March 31, 2005
Tweet
Share
More Decks by 自然言語処理研究室
See All by 自然言語処理研究室
データサイエンス14_システム.pdf
jnlp
0
380
データサイエンス13_解析.pdf
jnlp
0
480
データサイエンス12_分類.pdf
jnlp
0
340
データサイエンス11_前処理.pdf
jnlp
0
460
Recurrent neural network based language model
jnlp
0
130
自然言語処理研究室 研究概要(2012年)
jnlp
0
130
自然言語処理研究室 研究概要(2013年)
jnlp
0
96
自然言語処理研究室 研究概要(2014年)
jnlp
0
120
自然言語処理研究室 研究概要(2015年)
jnlp
0
190
Other Decks in Research
See All in Research
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
730
NLP Colloquium
junokim
1
180
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
540
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
210
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3k
近似動的計画入門
mickey_kubo
4
1k
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
150
Generative Models 2025
takahashihiroshi
23
13k
データサイエンティストの就労意識~2015→2024 一般(個人)会員アンケートより
datascientistsociety
PRO
0
960
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
1
100
業界横断 副業・兼業者の実態調査
fkske
0
220
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
480
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Making Projects Easy
brettharned
117
6.3k
Thoughts on Productivity
jonyablonski
69
4.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
4 Signs Your Business is Dying
shpigford
184
22k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
A designer walks into a library…
pauljervisheath
207
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Bash Introduction
62gerente
614
210k
Designing for Performance
lara
610
69k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Transcript
খֶ2ੜͷΛղ͘ ి༏ࢠ2ੜɾσϞ ᜊ౻ਅ࣮ʢԬٕज़Պֶେֶʣ ԬాඒߐʢԬٕज़Պֶେֶʣ ؔࠜ૱ʢϥϯήʔδΫϥϑτɾχϡʔϤʔΫେֶʣ Ҫࠤݪۉʢಠཱߦ๏ਓใ௨৴ݚڀػߏʣ
֓ཁ খֶ2ੜͷࠃޠͷΛղ͘ϓϩάϥϜΛ ࡞ Λྨ͠ɺͦΕͧΕʹରԠͨ͠αϒγεςϜ ʢܭ47छྨʣΛ࡞ త
ࣗવݴޠॲཧٕज़ΛҰൠͷਓʹ͔Γ͍͢ Ԡ༻ͷܗͰ࣮ݱ͢Δ ରͷϨϕϧΛԼ͛ɺΛݟͭΊͳ͓͢ ˠ໌ͷޱ಄ൃදͰߟ
ࣈͷ ಡΈͷ ܗଶૉղੳ݁ՌΛར༻ ಡΈͷࣝΛͲ͔͜Β༻ҙ͢Δ͔ʁ ॻ͖ͷ
ࣈࣙॻ͔ΒީิΛर͍ɺίʔύεʢ৽ฉه ࣄ38ɺWEB350GBʣ͔ΒͬͱΒ͠ ͍ͷΛબͿ ॻ͖ॱɾ෦ͷΈ߹Θͤɾࣈͷྨ
ਖ਼ղྫ1ʢࣈʣ ྫ1ɽΓ ճΔɻ ˠ ·Θ ճͯΜɻ ˠ ͔͍ ྫ2ɽهΛ ॻʢ͔ʣ͘ɻ
ˠ ʹ͖ͬ ྫ3ɽڕʢ͏͓ʣࢢʢʣ ˠ ͍ͪ
ਖ਼ղྫ2ʢࣈʣ ྫ4ɽΛ ͳͭɻ Λͳͭ 18 Λͳͭ 0 ՈΛͳͭ 0 ྫ5ɽ࣍ͷ෦Λ࣋ͭࣈΛॻ͖ͳ͍͞ɻ
ʻ͞Μ͍ͣʼ ͖ंʹ ͷΔɻ੨͍ ͏Έɻ ˠ ؿ ւ
ෆਖ਼ղྫ1ʢࣈʣ ಡΈͷબϛεʢ3ʣ ྫ1ɽΏͼͷؒɻˠ͔Μ ྫ2ɽྗ͕ڧ͍ɻˠ͠ʢ͍ʣ ྫ3ɽಉ͡ɻˠ͓Μͳʢ͡ʣ ˢ͜Εਖ਼ղ͔ʁ
ෆਖ਼ղྫ2ʢࣈʣ ܗଶૉղੳϛεʢ1ʣ ྫ4ɽҰؒɻ Ұ/ؒʢ͍ͪ ;Μ͔Μ ʣ ࣈͷબϛεʢ1ʣ ྫ5ɽͳ͖͕͓
ˠ ղͳ͠
ෆਖ਼ղྫ3ʢࣈʣ ίʔύεதʹଘࡏͤͣʢ1ʣ ྫ6ɽ͓͡ʹ ߹͏ɻ 0 ͓͡ʹ ձ͏ɻ 0
ಉԻҟٛޠʢ1ʣ ྫ7ɽʮఋʯ͔ʮٛఋʯ͔ʁ
ݴ༿ͷ ࣙॻେنίʔύεʢ৽ฉهࣄ38 ɺWEB350GBʣʹΑͬͯ͋Δఔղ͚ Δ ͷछྨ͕͔ͳΓଟ͍ ରɾͳ͔·ɾΑ͏͢ɾॿࢺɾΧλΧφ
ͷߏ͕ҧ͏ͱຊདྷಉ͡ϓϩάϥϜ Ͱղ͚ΔͣͷʹରԠͰ͖ͳ͍ ྨΛࡉԽ͗͢͠ʁࠓޙͷ՝
ਖ਼ղྫ1ʢݴ༿ʣ ྫ6ɽ[ରͷݴ༿]ʵઢͷݴ༿ͱରͷҙຯͷ ݴ༿Λॻ͖ͳ͍͞ɻ ͕ͤ ߴ͍ɻ ˱ ͕ͤ ʢ͍ʣɻ ͶͩΜ͕ ߴ͍
˱ ͶͩΜ͕ ʢ͍҆ʣɻ ྫ7ɽ[ͳ͔·ͷݴ༿]ͳ͔·Λͻͱ·ͱΊʹͨ͠ ݴ༿ΛબΜͰॻ͖ͳ͍͞ɻ ʢ1ʣ അɾ͏͗͞ɾ͞Δɾ͖ΓΜ [ௗɾ͕͖ͬɾͲ͏Ϳͭ]
ਖ਼ղྫ2ʢݴ༿ʣ ྫ8ɽ[ॿࢺͷ] ͖͑˘ ͍ͨ ܑ˘ɺ ఋ˘ ݟ͚ͭͨɻ [ʹ/ͷ] [/] [Λ/Ͱ]
ྫ9ɽ[Α͏͢Λද͢ݴ༿]ʵઢͷݴ༿ͷ ͍ํ͕ਖ਼͍͠΄͏ʹɺ˓Λ͚ͭͳ͍͞ɻ ʢ˓ʣ͖ͼ͍͠ ͞Ή͞ʹ ͳΔɻ ʢ ʣ͖ͼ͍͠ ੜ͖ͷ͕ ͢Ήɻ
ෆਖ਼ղྫ̍ʢݴ༿ʣ ྫ8ɽ[ॿࢺͷ] ΓΜ͝˘ Έ͔Μ˘ ങ͏ɻ [Λ/ͱ/ʹ] [Λ/ͱ/ʹ] ग़ྗɿΛɾΛ ྫ9ɽ[Α͏͢Λද͢ݴ༿]ମͷ෦Ͱ͢Δ ಈ͖Λද͢ݴ༿ΛબΜͰॻ͖ͳ͍͞ɻ
[৯ΔɾݟΔɾͳ͕ΊΔɾ͢] ʢ1ʣ ʢ2ʣޱ
ෆਖ਼ղྫ2ʢݴ༿ʣ ྫ10ɽ[ΧλΧφ]࣍ͷͷΛʢ1ʣɺʢ2ʣʹ͚͔ͯͨ ͔ͳͰॻ͖ͳ͍͞ɻ બࢶɿΆͪΌΜɾͷ͏ͱɾ͕͕͞͞ɾͿΒ͠ ʢ1ʣͷͷԻ ʢ2ʣ֎ࠃ͔Βདྷͨ͜ͱ ྫ11ɽ[Α͏͢Λද͢ݴ༿]࣍ͷΑ͏͢Λද͢ݴ༿Λ []͔Βબͼͳ͍͞ɻ େ͖ͳͷ͕ Ώͬ͘Γ
͜Ζ͕Δ Α͏͢ɻ [͜Ζ͜Ζɾ͝Ζ͝ΖɾͷΖͷΖ] ग़ྗɿͷΖͷΖ ਖ਼ղɿ͝Ζ͝Ζ
ಡղ ͩΕɾ͍ͭɾͲ͜ɾԿɾͳͥɾͲΜͳɾ݀ຒΊ ͷछྨͰදతͳ5ͭͷख๏Λ͍͚Δ ʢaʣύλʔϯϚονϯάʢྫ12ʣ ʢbʣݻ༗දݱޙͷॿࢺͷछྨʢྫ12ʣ ʢcʣख͕͔ΓޠΛ༻͍ͨ෦Ϛονʢྫ10ɺ13ʣ ʢdʣίʔύεதͰͷසʢྫ11ʣ ʢeʣจதͷΩʔϫʔυͷར༻
ਖ਼ղྫ1ʢಡղʣ ྫ10ɽ[ͲΕ͘Β͍ʴܗ༰໊ࢺ]͔͑ͬͨ ͔ΓͷͻͳɺͲΕ͙Β͍ͷେ͖͞Ͱ͔͢ɻ ຊจʢҰ෦ʣɿ͔͔͑ͬͨΓͷͻͳɺࢠͲ ͷΏͼͷઌ͙Β͍ͷେ͖͞Ͱ͢ɻ ਖ਼ղɿࢠͲͷΏͼͷઌ͙Β͍
ਖ਼ղྫ2ʢಡղʣ ྫ11ɽ[ଓࢺ]ʮʙͨ͘͞Μͷ ͍͑Α͏Λ ͓ͬ͘ ͯ ͍ΔͷͰ͢ɻ ˘ɺՖɺ͔ͬ͢Γ ͔Εͯʙʯ બࢶɿΞɽ·ͣ Πɽ͕ͯ
ɽͦΕͱ ਖ਼ղɿΠ ྫ12ɽ[Ͳ͜]͓݄༷ɺͲ͔͜ΒإΛग़͠·͔ͨ͠ɻ ຊจʢҰ෦ʣɿࢁͷͯͬΜ͔Βɺ͓݄༷͕إΛग़ ͯ͠ɺʙ ਖ਼ղɿࢁͷͯͬΜ
ਖ਼ղྫ3ʢಡղʣ ྫ13ɽ[ͳͥɾͲ͏ͯ͠]εʔϗ͕ࢠഅΛͭΕͯ ͖ͨͷɺͲ͏ͯ͠Ͱ͔͢ɻ ຊจɿʮ΄͏͓͍ͬͯͨΒɺʹͳͬͯɺ͓͓͔Έ ʹ৯ΘΕͯ͠·͏͔͠Εͳ͍ɻͦΕͰɺͭΕͯ ͖ͨΜͩΑɻʯ ਖ਼ղɿ΄͏͓͍ͬͯͨΒɺʹͳͬͯɺ͓͓͔Έ ʹ৯ΘΕͯ͠·͏͔͠Εͳ͍͔Β
ෆਖ਼ղྫ1ʢಡղʣ ྫ12ɽ[݀ຒΊ]ࢠͩ͵͖Ͳ͏ͯ͠ʮ·͖Λͤ ͓ͬͯʯ͍ͨͷͰ͔͢ɻ ʢ̍ʣΛങ͏ʢ̎ʣͷΘΓʹ͢ΔͨΊɻ ຊจɿʮ͢·Μ͕ͨ͜ΛҰͭചͬͯ͘ΕΜ͔ͳɻ ͓͕ۚͳ͍ͷͰɺΘΓʹ·͖ΛूΊ͖ͯͨΜ ͚ͩͲɻʯ ग़ྗɿ ʢ̍ʣ͓͗͡ ʢ̎ʣͦ͠͏
ਖ਼ղɿ ʢ̍ʣͨ͜ ʢ̎ʣ͓ۚ
ෆਖ਼ղྫ2ʢಡղʣ ྫ13ɽ[ͳͥɾͲ͏ͯ͠]͏ΊͷՖ͕ɺͼͬ͘Γͨ͠ ͷɺͲ͏ͯ͠Ͱ͔͢ɻ ຊจʢҰ෦ʣɿʮ͋ΒΒɻࠓ͝Ζ·ͩɺΈΜͳ͍ͬ ͠ΐʹͶΉ͍ͬͯΔΜ͡Όͳ͔ͬͨͷɻʯ ग़ྗɿ΅͘ɺ͔ͬ͢Γय़ͩͱࢥͬͨͷ͔ͩΒ ਖ਼ղɿͯΜͱ͏ɺ·ͩͶΉ͍ͬͯΔ͔ͣͩΒɻ
ෆਖ਼ղྫ3ʢಡղʣ ྫ14ɽ[Կ]ΘͨໟʹɺԿ͕͍͍ͭͯ·͔͢ɻ ຊจɿͨΜΆΆɺ͜ͷΘͨໟʹ͍͍ͭͯΔͨͶΛɺ ;Θ;Θͱͱ͢ͷͰ͢ɻ ग़ྗɿͱ͖ ਖ਼ղɿͨͶ ྫ15ɽ[Ͳ͜]Ͳ͜ʹ͍ͬͨͱ͖ͷ͜ͱΛɺ࡞จʹ ॻ͍͍ͯ·͔͢ɻ ຊจɿޒ݄ʹɺ͔ͪͯͭʹͷͬͯɺ͖͠Ͷ͜͏͑Μ ʹ͍͖·ͨ͠ɻ
ग़ྗɿ͔ͪͯͭ ਖ਼ղɿ͖͠Ͷ͜͏͑Μ
ධՁ ܇࿅σʔλ ެจग़൛ͷʮֶྗνΣοΫςετ 2ੜࠃޠʯ ςετσʔλ ࣮ࡍʹγεςϜ͕ରԠ͍ͯ͠Δʢରͷ
ʣ ࡞ͨ͠γεςϜͰղ͚ͳ͍ͷؚΉશͯͷ ʢશମͷʣ γεςϜ͕ରͱͨ͠ͷׂ߹ ࣈ97.4%ɺݴ༿55.9%ɺಡղ64.7%
ධՁ݁Ռ શମͷ ରͷ ਖ਼ղ ਖ਼ղ ʢରʣ [%] ਖ਼ղ
ʢશମʣ [%] ܇࿅σʔλશ ମͷਖ਼ղ [%] ࣈ 76 74 69 93.2 90.8 89.3 ͜ͱ 245 140 117 83.6 47.8 71.5 ಡղ 34 21 10 47.6 29.4 63.8 શମ 355 235 196 83.4 55.2 80.3