in Wearables Research Friday, November 3 Advances and Challenges in Wearables Research Julia Wrobel, PhD Keynote Speaker Friday, November 3 10:00 AM โ 3:00 PM REGISTER: bit.ly/BERD2023 In-Person: Morehouse School of Medicine, Building A, 4th Floor Sr. Biostatistician Virtual: Zoom
โข Active individuals tend to live longer and healthier lives โข Traditionally, this has been done using retrospective questionnaires โข Accelerometers have become hugely popular โข Objective โข Collection โin the wildโ โข High resolution 7
for debate โข Consider moderate-to-vigorous physical activity (MVPA) โข How are โactivity countsโ generated? โข How are cut points formed (no PA / light PA/ MVPA)? โข Are these consistent across devices? Age groups? Placements? โข Some general recommendations โข Keep data in rawest form possible โข Process using non-proprietary software 11
24-hour periods- the exact focus of FDA! โข In FDA, outcome is curve or function ๐! ๐ก โข For accelerometer data ๐! ๐ก is a 24-hour activity profiles 12 ๐ก (hour) ๐! (๐ก)
raw data โข Less information is discarded โข Better ways of imputing data โข Missing data is a big problem in wearables โข Time-dependent interpretations โข Timing and consistency โข Does it matter when and how regularly someone moves? 13
โข Functional outcome, scalar predictors (e.g. age) โข UK Biobank Accelerometry Study โข 80,000+ participants โข Generalized functional principal components analysis (gFPCA) โข National Health and Nutrition Examination Survey (NHANES) โข 4,000+ participants (2011-2014 wave) โข Registration โข How does timing of wake/sleep, PA differ across people? โข Baltimore Longitudinal Study on Aging (BLSA) โข 500+ participants 14
daily activity patterns across ages from functional regression โข Left are males, right panel are females 17 J. Wrobel, J. Muschelli, and A. Leroux (2021). Sensors.
regression model exponential family functional data using a (GLM)-like framework ๐ ๐ธ ๐! ๐ = ๐! ๐ = ๐ฝ" ๐ + ๐! ๐ = ๐ฝ" ๐ + + #$% & ๐!# ๐# ๐ โข ๐! โผ ๐ธ๐ฅ๐๐๐๐๐๐ก๐๐๐ ๐น๐๐๐๐๐ฆ; ๐(โ ) is a link function โข ๐ฝ& ๐ is a population mean function โข ๐' ๐ are population level eigenfunctions โข ๐!' are subject-specific scores 23
Examination Survey โข Accelerometer data from 2011-2014 wave released in 2021 โข Accelerometer data over multiple days from > 4000 subjects โข 1440 minutes per day of PA measurement โข Goal is to understand population patterns in sedentary behavior โข Existing FDA methods cannot handle data of this size โข We proposed a fast, general-purpose algorithm for generalized FPCA 24
+ ๐! ๐ = ๐ฝ" ๐ + + #$% & ๐!# ๐# ๐ 1. Bin the data along the functional domain ๐ into ๐ฟ bins 2. Estimate separate local GLMMs in each bin to obtain ๐! ๐ (! at each bin midpoint 3. Estimate FPCA on local latent estimates ๐! ๐ (! to obtain eigenfunctions ๐ ๐ 4. Estimate global model conditioning on eigenfunctions ๐ ๐ by re- estimating subject-specific scores ๐!' Four-step fast GFPCA algorithm A. Leroux, C. Crainiceanu, and J. Wrobel (2023+). Fast generalized functional principal components analysis. Under review.
Variational Bayes binary FPCA (Wrobel, 2019), bfpca โข Canโt estimate Poisson or other distributions โข Two-step conditional model (Gertheiss, 2017), tsGFPCA โข Breaks for N > 100 โข fastGFPCA is โข More accurate than tsGFPCA for binary and Poisson data โข Order of magnitude faster โข As or more accurate than bfpca for binary data โข Comparable computation time 26
Estimates template to which curves are registered โข uses fast, novel variational EM algorithm for binary functional data โข Step 2: Estimates warping function for each subject โข uses constrained maximum likelihood estimation โข Implemented in R package registr โข Implemented in C++ 34 โข Wrobel, Goldsmith (2019). Registration for exponential family functional data. Biometrics. โข Wrobel (2018). registr: Registration for exponential family functional data. Journal of Open Source Software. 3.
Columbia Biostatistics Functional Data Analysis Working Group โข Jeff Goldsmith Johns Hopkins School of Public Health WIT: Wearable and Implantable Technology โข Vadim Zipunnikov โข Jennifer Schrack โข John Muschelli โข Ciprian Crainiceanu โข Xinkai Zhou
is the midpoint bin ๐ โ 1, โฆ , ๐ฟ Considerations โข Bin width: simplicity- equidistance and non- overlapping โข Number of bins โข Too many bins: bin width is too small, identifiability issues
is the midpoint bin ๐ โ 1, โฆ , ๐ฟ Considerations โข Bin width: simplicity- equidistance and non- overlapping โข Number of bins โข Too many bins: bin width is too small, identifiability issues โข Too few bins: bins width too big, donโt capture shape of underlying function
is the midpoint bin ๐ โ 1, โฆ , ๐ฟ Considerations โข Bin width: simplicity- equidistance and non- overlapping โข Number of bins โข Too many bins: bin width is too small, identifiability issues โข Too few bins: bins width too big, donโt capture shape of underlying function
Fit separate GLMM in each bin to get latent estimates โข ๐ ๐ธ ๐! ๐ "! = ๐ฝ$ ๐ "! + ๐! ๐ "! = ๐! ๐ "! โข ๐ "! : time ๐ at the midpoint of bin ๐ โข ๐ฝ$ ๐ "! : fixed effect mean โข ๐! ๐ "! : subject-specific random effect โข ๐! ๐ "! : linear predictor, local latent estimates โข Estimates are not on the original domain โข On domain defined by bin midpoints โข Model assumes constant effect for ๐ฝ% , ๐! across each bin โข Used for estimating covariance matrix and eigenfunctions
Step 3 โข ๐ ๐ธ ๐! ๐ | = ๐ฝ$ ๐ + โ%&' ( ๐!% / ๐% ๐ โข Eigenfunctions are orthogonal basis functions โข Reduces number of covariance parameters that need to be estimated for random effects โข Simple implemention โข mgcv::bam()