Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
再帰呼び出し / Python Recursion
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
kaityo256
PRO
November 14, 2023
Education
1
2.2k
再帰呼び出し / Python Recursion
プログラミング基礎同演習
kaityo256
PRO
November 14, 2023
Tweet
Share
More Decks by kaityo256
See All by kaityo256
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
11k
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
13
7k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.7k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
12
4.3k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
7
760
論文紹介のやり方 / How to review
kaityo256
PRO
18
90k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
18
1.9k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
730
Other Decks in Education
See All in Education
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
JAPAN AI CUP Prediction Tutorial
upura
1
510
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
720
Linguaxes de programación
irocho
0
520
【旧:ZEPメタバース校舎操作ガイド】
ainischool
0
790
子どもが自立した学習者となるデジタルの活用について
naokikato
PRO
0
180
Activité_5_-_Les_indicateurs_du_climat_global.pdf
bernhardsvt
0
120
自己紹介 / who-am-i
yasulab
PRO
4
6.3k
【ベテランCTOからのメッセージ】AIとか組織とかキャリアとか気になることはあるけどさ、個人の技術力から目を背けないでやっていきましょうよ
netmarkjp
1
850
IHLヘルスケアリーダーシップ研究会17期説明資料
ihlhealthcareleadership
0
780
ThingLink
matleenalaakso
28
4.3k
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.3k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
170
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
820
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
76
A designer walks into a library…
pauljervisheath
210
24k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
67
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
1 20 再帰呼び出し プログラミング基礎同演習 慶應義塾大学理工学部物理情報工学科 渡辺
2 20 本講義で学ぶこと 再帰呼び出し
3 20 再帰とは 再帰的定義:定義の記述に自分自身があらわれるもの フォルダ:その中にフォルダとファイルを含むもの A B B X Y
Z
4 20 プログラムにおける再帰呼び出しとは ある関数が、自分自身を呼び出すこと def func(): func() 上記のプログラムは、funcがfuncを呼び、呼び出さ れたfuncがまたfuncを呼び…と、実行が終わらない 再帰呼び出しには、必ず終端条件が必要
5 20 再帰の例:階乗 自然数の階乗を返す関数fact(n)が作りたい def fact(n): a = 1 for
i in range(1, n+1): a *= i return a 以下のようにループを回してしまうのが簡単だが、再帰で考えてみる
6 20 再帰三カ条 1. 再帰とは、自分自身を呼び出す関数である 2. 関数の最初に「終端条件」を記述する 3. 「解きたい問題より小さな問題」に分解して 自分自身を呼び出す
※必ずしも上記に当てはまらない再帰もあるが、まずはこれが基本だと覚えること
7 20 再帰の考え方 「今解きたい問題よりも小さな問題の答えが全 てわかっている場合、解きたい問題の答えはど う記述できるだろうか?」 nの階乗fact(n)について、fact(n-1)の答えがわかっているなら、 fact(n) = n
* fact(n-1) 階乗の場合: fact(n) fact(n-1)
8 20 再帰の終端条件 fact(n) = n * fact(n-1) fact(n-1) =
(n-1) * fact(n-2) ... fact(2) = 2 * fact(1) 「分解」を繰り返すと、いつか「これ以上分解できない状態」に到達する 終端条件 ※ 0!=1としてfact(0)まで考えても結果は同じ ここでおしまい
9 20 再帰の終端条件 def fact(n): if n == 1: return
1 return n * fact(n-1) 終端条件は(原則として)関数の最初に記述する 終端条件
10 20 再帰三カ条 階乗を計算する関数 def fact(n): if n == 1:
return 1 return n * fact(n-1) 1. 定義中に自分自身を呼び出している 2. 関数の最初に終端条件がある 3. 「より小さな問題」として自分を呼びだす 1. 再帰とは、自分自身を呼び出す関数である 2. 関数の最初に「終端条件」を記述する 3. 「解きたい問題より小さな問題」に分解して自分自身を呼び出す
11 20 再帰関数の実行のされ方 def fact(n): if n == 1: return
1 return n * fact(n-1) fact(3) fact(2) fact(1) 呼び出し 呼び出し ここで終端条件にマッチ fact(1) = 1 fact(2) = 2 * fact(1) fact(3)ください fact(3) = 3 * fact(2) = 6 再帰は「行って帰って」来る
12 20 今日これだけは覚えて欲しい 1. 再帰とは、自分自身を呼び出す関数である 2. 関数の最初に「終端条件」を記述する 3. 「解きたい問題より小さな問題」に分解して 自分自身を呼び出す
再帰三カ条 再帰は「行って帰って」来る fact(3) fact(2) fact(1) 呼び出し 呼び出し ここで終端条件にマッチ fact(1) = 1 fact(2) = 2 * fact(1) fact(3)ください fact(3) = 3 * fact(2) = 6
13 20 課題1:階段の登り方問題 3 = 1 + 1 + 1
3 = 1 + 2 3 = 2 + 1 n段の階段を1段もしくは2段を混ぜて登る時、何通りの登り方があるか? n段の階段の登り方の数を返す関数 kaidan(n)が欲しい
14 20 課題1:階段の登り方問題 3 = 1 + 1 + 1
3 = 1 + 2 3 = 2 + 1 整数nを、1や2の和として表す方法の数 3 = 1 + 1 + 1 3 = 1 + 2 3 = 2 + 1 4 = 1 + 1 + 1 + 1 4 = 1 + 1 + 2 4 = 1 + 2 + 1 4 = 2 + 1 + 1 4 = 2 + 2 kaidan(3) = 3 kaidan(4) = 5
15 20 課題1:階段の登り方問題 再帰の考え方 「今解きたい問題よりも小さな問題の答えが全 てわかっている場合、解きたい問題の答えはど う記述できるだろうか?」 階段を登り切る時は、最後に1段登る場合と2段登る場合がある n n-1
n-2 n n-1 n-2 kaidan(n) = kaidan(n-1) + kaidan(n-2)
16 20 課題1:階段の登り方問題 再帰呼び出しには、必ず終端条件が必要 階段の段数が1段や2段の場合には値を返す def kaidan(n): # 終端条件 if
条件: return 値 # 再帰部分 return 自分自身を使った式 最終的に関数はこんな形になる 終端条件が二つあることに注意すること
17 20 課題2:迷路の解法 迷路が与えられた時、スタートからゴールまでの道を知りたい • とりあえず進んで見る • 分かれ道に来たら、現在位置を覚えて適当に進む • もし行き止まりなら、先程の場所まで戻って別の道を試す
基本的なアルゴリズム このように「とりあえず試して、ダメならやりなおす」 というアルゴリズムをバックトラックと呼ぶ
18 20 バックトラック とりあえず片方を試してみて、ダメなら戻る 1 2 3 4 5 6
7 将棋や囲碁の思考ルーチンに使われる 数独等では「仮置き」と呼ばれる
19 20 迷路の解き方(矢印版) 1. 分かれ道に来た 2. とりあえず片方に進んで見る 3. 行き止まりだったので戻る 4.
まだ試してない道があれば進む
20 20 迷路の解き方(数字版) 0 1 2 0 1 2 3
3 5 4 5 6 6 7 1. スタートからの距離を記録 2. 距離地図が完成する 0 1 2 3 3 5 4 5 6 6 7 0 1 2 3 3 5 4 5 6 6 7 3. ゴールからカウントダウン 4. スタート地点まで到達したら完成