Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] Prototypical Contrastive Learnin...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
August 01, 2022
Technology
1
970
[Journal club] Prototypical Contrastive Learning of Unsupervised Representations
慶應義塾⼤学 杉浦孔明研究室 B4 和田唯我 / Yuiga Wada
Semantic Machine Intelligence Lab., Keio Univ.
PRO
August 01, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
keio_smilab
PRO
0
83
[Journal club] Model Alignment as Prospect Theoretic Optimization
keio_smilab
PRO
0
94
[Journal club] DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
keio_smilab
PRO
0
53
[Journal club] LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
keio_smilab
PRO
2
81
Will multimodal language processing change the world?
keio_smilab
PRO
3
540
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
150
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
150
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
150
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
1
180
Other Decks in Technology
See All in Technology
SnowflakeとDatabricks両方でRAGを構築してみた
kameitomohiro
1
480
PostgreSQL Log File Mastery: Optimizing Database Performance Through Advanced Log Analysis
shiviyer007
PRO
1
140
4/16/25 - SFJug - Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
2
130
生成AIによるCloud Native基盤構築の可能性と実践的ガードレールの敷設について
nwiizo
7
1.2k
クォータ監視、AWS Organizations環境でも楽勝です✌️
iwamot
PRO
1
340
От ручной разметки к LLM: как мы создавали облако тегов в Lamoda. Анастасия Ангелова, Data Scientist, Lamoda Tech
lamodatech
0
810
Стильный код: натуральный поиск редких атрибутов по картинке. Юлия Антохина, Data Scientist, Lamoda Tech
lamodatech
0
810
技術者はかっこいいものだ!!~キルラキルから学んだエンジニアの生き方~
masakiokuda
2
280
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
260
【Oracle Cloud ウェビナー】ご希望のクラウドでOracle Databaseを実行〜マルチクラウド・ソリューション徹底解説〜
oracle4engineer
PRO
1
110
AWSで作るセキュアな認証基盤with OAuth mTLS / Secure Authentication Infrastructure with OAuth mTLS on AWS
kaminashi
0
190
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
220
Featured
See All Featured
A designer walks into a library…
pauljervisheath
205
24k
BBQ
matthewcrist
88
9.6k
Practical Orchestrator
shlominoach
187
11k
[RailsConf 2023] Rails as a piece of cake
palkan
54
5.4k
GraphQLの誤解/rethinking-graphql
sonatard
71
10k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Writing Fast Ruby
sferik
628
61k
Raft: Consensus for Rubyists
vanstee
137
6.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Become a Pro
speakerdeck
PRO
27
5.3k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
Prototypical Contrastive Learning of Unsupervised Representations Junnan Li, Pan Zhou,
Caiming Xiong, Steven C.H. Hoi (Salesforce Research) Li, Pan Zhou, Caiming Xiong and Steven C. H. Hoi. Prototypical Contrastive Learning of Unsupervised Representations, ICLR2021 慶應義塾⼤学 杉浦孔明研究室 和⽥唯我 ICLR 2021
和田唯我 / Yuiga Wada
概要 2 ü 教師なし表現学習⼿法 Prototypical Contrastive Learning (PCL) を提案 ü
EM-algorithmに基づき, プロトタイプを基準とした損失 ProtoNCE Loss を提案 ü 様々な画像認識タスクで既存⼿法を超える結果を記録
背景: Instance-wiseな対照学習は, 本質的な意味情報を獲得できない 3 o Instance-wiseな教師なし表現学習 • 加⼯された画像(instance)のペアが同じ元画像に由来するかを識別 o Instance-wiseな⼿法における2つの問題点
1. 低次元の特徴だけで識別できるため,識別はNNにとって簡単なタスク ⇒ ⾼密度な情報をエンコードしているとは⾔い難い 2. ペア間の類似度が⾼くても, 負例は負例として扱う ⇒ 負例ペアにおける類似性についての 意味情報は獲得できない
既存⼿法: 対照学習⼿法には改善の余地がある 4 既存⼿法 種類 問題点 • SimCLR[Chen+, ICML20] •
MoCo[He+, CVPR20] Instance-wise Instance-wiseな⼿法であり, 前述の問題点有り • DeepCluster[Caron+, ECCV18] prototype-wise PCAによる次元削減処理を挟む ⇒クラスタリングによる最適化が 直接的でない DeepCluster[Caron+, ECCV18] PCA not good
提案⼿法: Prototypical Contrastive Learning (PCL) 5 Prototypical Contrastive Learning (PCL)
• EM-Algorithmに基づき, クラスタリングを⾏いながら特徴表現を学習 1. E-Step : kNN法によるクラスタリングでプロトタイプの事後分布を決定 2. M-Step : 対数尤度の期待値を最⼤化するパラメタを計算 提案⼿法における更新⼿順
EM-Algorithm: PCLでは対数尤度最⼤化のためEMを⽤いる 6 1. E-Step : kNN法によるクラスタリングでプロトタイプの事後分布を決定 2. M-Step :
対数尤度の期待値を最⼤化するパラメタを計算 提案⼿法における更新⼿順 プロトタイプ 𝒄𝒊 を潜在変数として, 対数尤度を最⼤化するモデルのパラメタ 𝜃 を獲得したい (プロトタイプ : クラスタの重⼼のこと) 提案⼿法の⽬標
前準備: 最適化における⽬的関数の整理 7 上式を直接求めるのは困難なので, Jensenの不等式より, 最右辺を最⼤化すれば良いので,最右辺からパラメタ 𝜃 依存部だけ取り出した下式 を⽬的関数とする. ただし,
𝑄 𝐜𝐢 ≔ 𝑝 𝒄𝒊 ; 𝒙𝒊 , 𝜽 (∵ ∑𝑄 𝐜𝐢 = 1 ⇒ − ∑ ∑𝑄 𝐜𝐢 𝑙𝑜𝑔𝑄 𝐜𝐢 は定数)
E-Step: クラスタリングによりプロトタイプの事後分布を決定 8 E-Step • Momentum Encoderの出⼒についてクラスタリングを実⾏ • kNN法によりプロトタイプ 𝒄𝒊
の事後分布 𝑝 𝒄𝒊; 𝒙𝒊, 𝜽 を決定 Encoderの指数移動平均
M-Step (1/3): 対数尤度を最⼤化するパラメタ 𝜃 を求める 9 M-Step • 対数尤度を最⼤化するパラメタ 𝜃
を求める • 事前分布を 1/𝑘 とすると, • ⼊⼒ {𝒙𝒊 } がプロトタイプを中⼼に等⽅的に分布してると仮定すると, 𝑝 𝒙𝒊; 𝒄𝒊, 𝜽 は
M-Step (2/3): 対数尤度を最⼤化するパラメタ 𝜃 を求める 10 以上より, 対数尤度を最⼤化するパラメタ 𝜃 は
(具体的な計算過程は省略) ・ ・ ・
M-Step (3/3): 対数尤度を最⼤化する損失関数を提案 11 M-Step • 対数尤度を最⼤化するパラメタ 𝜃 は 損失に組み込む
損失関数 ProtoNCE Loss (提案⼿法)
ProtoNCE Lossはインスタンスのペアも損失に⽤いる 12 ProtoNCE Loss ⇒ ProtoNCE Lossはインスタンスのペアも損失に使⽤ InfoNCE Loss[Oord+,
2018] → MoCoで使⽤される損失関数 instance-wise prototype-wise
定性的結果: 特徴ごとに適切なクラスタが形成 13 • 各クラスタに属する画像をランダムに選択 ⇒ 教師なし学習にも拘らず, 特徴ごとに適切なクラスタが形成 Cluster X
Cluster Y
定量的結果: 画像分類タスクにおいて既存⼿法を上回る結果 14 • ResNet + 線形分類器による画像分類 ⇒ MoCoやSimCLRといった既存⼿法を上回る結果を記録
定量的結果: 物体検出タスクにおいて既存⼿法を上回る結果 15 • ImageNet-1Mを⽤いた物体検出 ⇒ MoCoによる事前学習や教師あり学習を上回る結果を記録
Ablation: 損失関数はインスタンスのペアも考慮するのが最良 16 • ProtoNCE Lossはinstance-wiseであり, prototype-wiseでもある → 損失を変えて画像分類タスクを実施 ⇒
”instance”・”proto”の両者を使うのが最良 instance-wise → “instance” prototype-wise → “proto”
PCL動かしてみた: Encoderの出⼒を線形SVMで⼆値分類 17 o 実験設定 • データセット: PASCAL VOC2007 [Everingham+,
IJCV10] • Encoderの出⼒ 𝒉 を線形SVMに通し, 各クラスについて⼆値分類 Linear SVM 𝒉 5 𝒚
PCL動かしてみた: 極めて単純なモデルでも⾼精度で画像分類可能に 18 • 全クラスにおいて mAP = 85.45を記録 • 例:
“airplain”の⼆値分類結果 (全クラスの画像を⼊⼒) → 線形SVMという⾮常に単純なモデルで極めて良い性能を記録 True Positive False Positive
まとめ 19 ü 教師なし表現学習⼿法 Prototypical Contrastive Learning (PCL) を提案 ü
EM-algorithmに基づき, プロトタイプを基準とした損失 ProtoNCE Loss を提案 • ただし, 純粋にprototype-wiseな損失にすると精度が落ちる ü 様々な画像認識タスクで既存⼿法を超える結果を記録
Appendix: 擬似コード 20
Appendix: t-SNEによる可視化結果 21
Appendix: プロトタイプの種類 22 • クラスタは包含関係を許容する (fine-grained / coarse-grained)