Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] Prototypical Contrastive Learnin...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
August 01, 2022
Technology
1
1k
[Journal club] Prototypical Contrastive Learning of Unsupervised Representations
慶應義塾⼤学 杉浦孔明研究室 B4 和田唯我 / Yuiga Wada
Semantic Machine Intelligence Lab., Keio Univ.
PRO
August 01, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Machine Intelligence for Vision, Language, and Actions
keio_smilab
PRO
0
570
[Journal club] V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
keio_smilab
PRO
0
130
[Journal club] Model Alignment as Prospect Theoretic Optimization
keio_smilab
PRO
0
150
[Journal club] DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
keio_smilab
PRO
0
78
[Journal club] LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
keio_smilab
PRO
2
110
Will multimodal language processing change the world?
keio_smilab
PRO
4
620
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
190
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
180
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
180
Other Decks in Technology
See All in Technology
生成AIをテストプロセスに活用し"よう"としている話 #jasstnano
makky_tyuyan
0
140
Tensix Core アーキテクチャ解説
tenstorrent_japan
0
350
AIエージェントのフレームワークを見るときの個人的注目ポイント
os1ma
1
520
kubellが挑むBPaaSにおける、人とAIエージェントによるサービス開発の最前線と技術展望
kubell_hr
0
280
「どこにある?」の解決。生成AI(RAG)で効率化するガバメントクラウド運用
toru_kubota
2
360
Tenstorrent 開発者プログラム
tenstorrent_japan
0
300
AWS全冠したので振りかえってみる
tajimon
0
130
型システムを知りたい人のための型検査器作成入門
mame
14
3.6k
Data Hubグループ 紹介資料
sansan33
PRO
0
1.8k
“プロダクトを好きになれるか“も QAエンジニア転職の大事な判断基準だと思ったの
tomodakengo
0
120
堅牢な認証基盤の実現 TypeScriptで代数的データ型を活用する
kakehashi
PRO
2
210
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
290
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.8k
Facilitating Awesome Meetings
lara
54
6.4k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Site-Speed That Sticks
csswizardry
10
630
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Designing for humans not robots
tammielis
253
25k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
480
Making Projects Easy
brettharned
116
6.2k
Transcript
Prototypical Contrastive Learning of Unsupervised Representations Junnan Li, Pan Zhou,
Caiming Xiong, Steven C.H. Hoi (Salesforce Research) Li, Pan Zhou, Caiming Xiong and Steven C. H. Hoi. Prototypical Contrastive Learning of Unsupervised Representations, ICLR2021 慶應義塾⼤学 杉浦孔明研究室 和⽥唯我 ICLR 2021
和田唯我 / Yuiga Wada
概要 2 ü 教師なし表現学習⼿法 Prototypical Contrastive Learning (PCL) を提案 ü
EM-algorithmに基づき, プロトタイプを基準とした損失 ProtoNCE Loss を提案 ü 様々な画像認識タスクで既存⼿法を超える結果を記録
背景: Instance-wiseな対照学習は, 本質的な意味情報を獲得できない 3 o Instance-wiseな教師なし表現学習 • 加⼯された画像(instance)のペアが同じ元画像に由来するかを識別 o Instance-wiseな⼿法における2つの問題点
1. 低次元の特徴だけで識別できるため,識別はNNにとって簡単なタスク ⇒ ⾼密度な情報をエンコードしているとは⾔い難い 2. ペア間の類似度が⾼くても, 負例は負例として扱う ⇒ 負例ペアにおける類似性についての 意味情報は獲得できない
既存⼿法: 対照学習⼿法には改善の余地がある 4 既存⼿法 種類 問題点 • SimCLR[Chen+, ICML20] •
MoCo[He+, CVPR20] Instance-wise Instance-wiseな⼿法であり, 前述の問題点有り • DeepCluster[Caron+, ECCV18] prototype-wise PCAによる次元削減処理を挟む ⇒クラスタリングによる最適化が 直接的でない DeepCluster[Caron+, ECCV18] PCA not good
提案⼿法: Prototypical Contrastive Learning (PCL) 5 Prototypical Contrastive Learning (PCL)
• EM-Algorithmに基づき, クラスタリングを⾏いながら特徴表現を学習 1. E-Step : kNN法によるクラスタリングでプロトタイプの事後分布を決定 2. M-Step : 対数尤度の期待値を最⼤化するパラメタを計算 提案⼿法における更新⼿順
EM-Algorithm: PCLでは対数尤度最⼤化のためEMを⽤いる 6 1. E-Step : kNN法によるクラスタリングでプロトタイプの事後分布を決定 2. M-Step :
対数尤度の期待値を最⼤化するパラメタを計算 提案⼿法における更新⼿順 プロトタイプ 𝒄𝒊 を潜在変数として, 対数尤度を最⼤化するモデルのパラメタ 𝜃 を獲得したい (プロトタイプ : クラスタの重⼼のこと) 提案⼿法の⽬標
前準備: 最適化における⽬的関数の整理 7 上式を直接求めるのは困難なので, Jensenの不等式より, 最右辺を最⼤化すれば良いので,最右辺からパラメタ 𝜃 依存部だけ取り出した下式 を⽬的関数とする. ただし,
𝑄 𝐜𝐢 ≔ 𝑝 𝒄𝒊 ; 𝒙𝒊 , 𝜽 (∵ ∑𝑄 𝐜𝐢 = 1 ⇒ − ∑ ∑𝑄 𝐜𝐢 𝑙𝑜𝑔𝑄 𝐜𝐢 は定数)
E-Step: クラスタリングによりプロトタイプの事後分布を決定 8 E-Step • Momentum Encoderの出⼒についてクラスタリングを実⾏ • kNN法によりプロトタイプ 𝒄𝒊
の事後分布 𝑝 𝒄𝒊; 𝒙𝒊, 𝜽 を決定 Encoderの指数移動平均
M-Step (1/3): 対数尤度を最⼤化するパラメタ 𝜃 を求める 9 M-Step • 対数尤度を最⼤化するパラメタ 𝜃
を求める • 事前分布を 1/𝑘 とすると, • ⼊⼒ {𝒙𝒊 } がプロトタイプを中⼼に等⽅的に分布してると仮定すると, 𝑝 𝒙𝒊; 𝒄𝒊, 𝜽 は
M-Step (2/3): 対数尤度を最⼤化するパラメタ 𝜃 を求める 10 以上より, 対数尤度を最⼤化するパラメタ 𝜃 は
(具体的な計算過程は省略) ・ ・ ・
M-Step (3/3): 対数尤度を最⼤化する損失関数を提案 11 M-Step • 対数尤度を最⼤化するパラメタ 𝜃 は 損失に組み込む
損失関数 ProtoNCE Loss (提案⼿法)
ProtoNCE Lossはインスタンスのペアも損失に⽤いる 12 ProtoNCE Loss ⇒ ProtoNCE Lossはインスタンスのペアも損失に使⽤ InfoNCE Loss[Oord+,
2018] → MoCoで使⽤される損失関数 instance-wise prototype-wise
定性的結果: 特徴ごとに適切なクラスタが形成 13 • 各クラスタに属する画像をランダムに選択 ⇒ 教師なし学習にも拘らず, 特徴ごとに適切なクラスタが形成 Cluster X
Cluster Y
定量的結果: 画像分類タスクにおいて既存⼿法を上回る結果 14 • ResNet + 線形分類器による画像分類 ⇒ MoCoやSimCLRといった既存⼿法を上回る結果を記録
定量的結果: 物体検出タスクにおいて既存⼿法を上回る結果 15 • ImageNet-1Mを⽤いた物体検出 ⇒ MoCoによる事前学習や教師あり学習を上回る結果を記録
Ablation: 損失関数はインスタンスのペアも考慮するのが最良 16 • ProtoNCE Lossはinstance-wiseであり, prototype-wiseでもある → 損失を変えて画像分類タスクを実施 ⇒
”instance”・”proto”の両者を使うのが最良 instance-wise → “instance” prototype-wise → “proto”
PCL動かしてみた: Encoderの出⼒を線形SVMで⼆値分類 17 o 実験設定 • データセット: PASCAL VOC2007 [Everingham+,
IJCV10] • Encoderの出⼒ 𝒉 を線形SVMに通し, 各クラスについて⼆値分類 Linear SVM 𝒉 5 𝒚
PCL動かしてみた: 極めて単純なモデルでも⾼精度で画像分類可能に 18 • 全クラスにおいて mAP = 85.45を記録 • 例:
“airplain”の⼆値分類結果 (全クラスの画像を⼊⼒) → 線形SVMという⾮常に単純なモデルで極めて良い性能を記録 True Positive False Positive
まとめ 19 ü 教師なし表現学習⼿法 Prototypical Contrastive Learning (PCL) を提案 ü
EM-algorithmに基づき, プロトタイプを基準とした損失 ProtoNCE Loss を提案 • ただし, 純粋にprototype-wiseな損失にすると精度が落ちる ü 様々な画像認識タスクで既存⼿法を超える結果を記録
Appendix: 擬似コード 20
Appendix: t-SNEによる可視化結果 21
Appendix: プロトタイプの種類 22 • クラスタは包含関係を許容する (fine-grained / coarse-grained)