Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プロスペクトをデータで紹介
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
kuma127
March 27, 2019
Research
2
2.7k
プロスペクトをデータで紹介
3/27 BaseballPlayStudyのLTスライド
kuma127
March 27, 2019
Tweet
Share
More Decks by kuma127
See All by kuma127
ReactPyを使ってreact likeにUIをPythonで実装する
kuma127
0
230
私と#pyhack
kuma127
0
300
配信チームの準備と当日進行について
kuma127
0
380
石川雅規のことをもっと知ってもらいたいLT
kuma127
0
1.5k
Beginning PyData with Django and Jupyter
kuma127
3
5.8k
DjangoとJupyterで捗るPyData
kuma127
1
1.7k
趣味駆動学習のススメ〜野球の場合〜
kuma127
0
350
気軽に手に入る成績データで野球分析をしてみた
kuma127
0
2.1k
Python is simple and deep
kuma127
0
66
Other Decks in Research
See All in Research
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
380
CoRL2025速報
rpc
4
4.1k
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
120
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
520
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
R&Dチームを起ち上げる
shibuiwilliam
1
140
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
250
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
320
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Making Projects Easy
brettharned
120
6.6k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
160
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
130
The Limits of Empathy - UXLibs8
cassininazir
1
210
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
170
BBQ
matthewcrist
89
10k
Code Review Best Practice
trishagee
74
20k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
HDC tutorial
michielstock
1
350
Transcript
2019/3/27 ࠓͷϒϨΠΫɺདྷͷޒྠද ୭ͩʁࠓͷϓϩεϖΫτΛσʔλͰհ ͘·ͽ TwitterIDɿ@kumappp27
ࣗݾհ ✤ ʮ͘·ͽʯͱ͍͍·͢ ✤ TwitterID:@kumappp27 ✤ ݹాPM͔࣌ΒͷͪͳϠΫ ✤ খହ߂खதଜ༔ฏัखͱಉ͍ͷΪϦฏੜ· Εʢฏ2ʣ
✤ ࣅ͍ͯΔͱݴΘΕ͍ͯͨळ٢ख͕Ҡ੶ͯ͠γϣοΫ
ຊͷ͓
ࠓͷϒϨΠΫɺདྷͷޒྠද ୭ͩʁࠓͷϓϩεϖΫτΛσʔλͰհ
͓ʹ͍ͭͯ ✤ ຖɺ͜ͷ࣌ظ͋Δ͋ΔͷҰͭͱͯ͠एखͷ׆༂Ͱ ϙδΔɺͱ͍͏ͷ͕͋Δͱࢥ͍·͢ ✤ ͋ͱɺͳΜ͔ΜͰଞٿஂͷબखͰए͍બख͕ϒ ϨΠΫ͢Δͷت͍͜͠ͱ…ͳؾ͕͠·͢ ✤ ͦ͜Ͱɺ͜ͷΛआΓͯࢲΠνΦγͷएखΛɺσʔλ Λ༻͍ͯհ͠Α͏ɺͱ͍͏LTͰ͢
հ͢Δʹ͋ͨͬͯ ✤ جຊతʹࢲͷಠஅͰϐοΫΞοϓ͠·͕ͨ͠ɺҰԠҎԼͷ ݅ͷݩϐοΫΞοϓ͠·ͨ͠ 1. ࠓͰ3·ͰʢܦྺΘͣʣ 2. ৽ਓԦࢿ͕֨͋Δ 3. υϥϑτ1Ґ͡Όͳ͍
✤ 1ͱ2͚ͩͩͱ༗໊ॴͷհʹͳͬͪΌ͏ͱࢥ͏ͷͰɺυϥϑ τ1Ґআ֎͠·ͨ͠
Special Thanks ✤ ࠓճσʔλΛ͓आΓͨ͠ఏڙݩͷαΠτ༷ͪ͜Βɹ ʮϓϩٿσʔλFreakʯ༷ ✤ ϦϯΫɿhttps://baseball-data.com/ ✤ 1܉ͷσʔλͪΖΜ2܉ͷσʔλॆ࣮͍ͯ͠Δૉ Β͍͠αΠτͰ͢
Ͱͬͦ͘͞1ਓ
ౡ౦༸Χʔϓɾࡔকޗ 19985݄29ੜ·Εʢ20ࡀʣ 2016υϥϑτ4Ґ ӈࠨଧɹัख
ࡔબख͜Μͳਓ ✤ ัखͳ͕Βߴ͍ଧܸηϯεɺ 50m࠷6ඵ3Λه͢Δ΄Ͳ ͷढ़Λซͤͭ ✤ ϧʔΩʔΠϠʔͷ2017ʹެ ࣜઓͰώοτΛଧ͕ͬͨɺ͜ Εౡͷߴଔ৽ਓัखͱ͠ ͯҥּ༤ࢯҎདྷͷҒۀ
ʢWikipediaΑΓൈਮʣ
ͦΜͳࡔબखͷηʔϧεϙΠϯτ…
ัखͰ͋Γͳ͕Βͷߴ͍ଧܸྗ ✤ 2ؒͷ2܉ͪ͜Β ଧ ຊྥଧ ग़ྥ ଧ OPS 2017 .298
1 .359 .400 .759 2018 .329 4 .372 .547 .919
ผࢦඪ͔Βࡔબखͷੌ͞ΛଌΔ ✤ ଧऀͷ߈ܸྗΛଌΔࢦඪͱͯ͠wOBA※ͱ͍͏ͷ͕͋ΔͷͰɺͦͪΒΛ༻͍ ͯࢉग़ͨ͠σʔλ͕ͪ͜Β ✤ ͜ͷࣈɺߴ͍΄Ͳྑ͘ɺࣈͷεέʔϧ͕ग़ྥͱಉ͡Α͏ʹग़དྷ͍ͯΔ ※wOBAͱ 1ଧ੮ͨΓͷಘग़ྗΛଌΔࢦඪɻ ҆ଧ࢛ٿͳͲͷग़ྥ݁ՌʹಠࣗͷॏΈ͚ͮΛͯ͠ࢉग़͢Δɻ ʢWikipediaΑΓɺࠓճσʔλͷ্ࣦؔࡦग़ྥͷهແࢹ͠·͢ʣ
wOBA 2017 .336218 2018 .397907
…Θ͔ΓͮΒ͍ͷͰྺͷऀୡͱൺֱͯ͠Έ·͠ΐ͏ ࠓΛͱ͖Ί͘൴Βʹ͝ొئ͍·ͨ͠ ※൴Βօଧ੮͕όϥόϥͰ͕͢ɺ wOBA1ଧ੮͋ͨΓͷࢦඪͳͷͰެฏ͋͞ΔఔอͯΔ͔ͱ ಡചδϟΠΞϯπ Ԭຊਅ બख ౡ౦༸Χʔϓ ླ બख
౦ژϠΫϧτεϫϩʔζ ࢁాਓ બख
൴Βͷߴଔ1,2ͱൺֱͯ͠ΈΔ ※ิɹླ2ʹ 1܉Ͱ68ଧ੮Ͱଧ.344Λه͍ͯ͠Δ બख໊ wOBA ࡔ 1 .336 2
.398 Ԭຊ 1 .293 2 .360 ླ 1 .304 2 .323 ࢁా 1 .295 2 .335
ૉΒ͍͠ ✤ ྺͷऀͱൺͯḮ৭ͳ͍ʢϦʔάҧ͏ ͷͰɺࢀߟఔͰ͕͢ʣ ✤ ͦΕͲ͜Ζ͔ɺ্ճͬͨΛ͍ͯ͠Δ ✤ ઌ΄Ͳड़͕ͨɺ͜ΕͰ͍ͯัख͔ͩΒڪΕଟ͍
ͦΜͳࡔબखʹΈࣄ͕ ✤ ౡͷัख͕ް͗͢Δ ✤ ࠓग़ػձΛٻΊͯ֎ʹઓ͍ͯ͠Δ༷ ϕετφΠϯ ܦݧ๛ͳϕςϥϯ ༗ג
ࡔબखͷظ ✤ όοςΟϯάͷ͍͍ัखͱͯ͠ɺΏ͘Ώ͘ͷຊද ೖΓΛظ ✤ ઌड़ͷྺͷऀօߴଔ4ʹେϒϨΠΫΛՌͨ ͨ͠ͷͰͦͷྲྀΕʹΔͳΒϒϨΠΫདྷʁ
࣍ʹ2ਓ
౦ژϠΫϧτεϫϩʔζɾԘݟ ହོ 19936݄12ੜ·Εʢ25ࡀʣ 2017υϥϑτ4Ґ ӈӈଧɹ֎ख
Ԙݟબख͜Μͳਓ ✤ ग़͕૬ߴֶߍͰɺ ग़ͷޙഐ ✤ #ϠόΠΑԘݟ ✤ ࡢͷΞδΞΟϯλʔ ϦʔάͰ࠷༏लଧऀ Λड
ͦΜͳԘݟબखͷηʔϧεϙΠϯτ…
ɾ߈ڞʹѹతͳ࣮ ✤ ϧʔΩʔΠϠʔͷࡢɺ1܉Ͱଧ.040ͱۤ͠Μͩ ͕ɺ2܉ࠓقͷΦʔϓϯઓͰѹతͳΛه ଧ HR ౪ྥ OPS BB/K ’18
Πʔελϯ .329 9 22 1.011 0.51 ’18 Οϯλʔ Ϧʔά .392 4 5 1.209 1.17 ’19 Φʔϓϯઓ .385 2 12 1.025 0.44
ࠓճྺͷऀͱൺֱ ✤ ࡢେ׆༂ͨ͠େଔɾࣾձਓग़ͷબखͷ1ͷ2܉ͱൺͯΈΔ ʢ˞ϝϯπ͕ͨΒΰπ͍Ͱ͕͢ɺؾͷ͍ͤʣ ࡛ۄϥΠΦϯζ ࢁึߴ બख ઍ༿ϩοςϚϦʔϯζ Ҫ্࠸ બख
ԣDeNAϕΠελʔζ ٶ㟒හ બख
൴Βͷ1ͷ̎܉ͱൺͯΈΔ બख໊ wOBA Ԙݟ .4294 ࢁ .4332 Ҫ্ .4490 ٶ࡚
.3863
ࢁʹΞδϟίϯάʹுΓ߹͍ͬͯΔ ✤ λΠϓతʹ3໊ͱԘݟબखͱͰશવҧ͏ͷ͕ͩɺ ͦΜͳ3ਓͷதʹׂͬͯೖΔΑ͏ͳ߈ܸྗΛඋ͍͑ͯ Δ ✤ #ϠόΠ ✤ ͜ͷ3ਓ͍ͣΕ3ʙ5ลΓʹϒϨΠΫ͍ͯ͠Δ ͷͰɺԘݟબखࠓޙͷϒϨΠΫ͕ظͰ͖Δ͔͠
Εͳ͍
ྫʹΑͬͯԘݟબखʹΈࣄ͕ ✤ ϠΫϧτͷ֎ϨΪϡϥʔਞ͕൫ੴ͗͢Δ HRهอ࣋ऀ ϝδϟʔؼΓ 3ׂόολʔ ✤ ·ͣπʔϓϥτϯى༻͔Βͷελʔτ͔…ʁ 3ׂόολʔ ϑΝʔετकΕΔ
Ԙݟબखͷظ ✤ νʔϜঢ়گతʹଈϨΪϡϥʔݫ͍͕͠ɺߴྸԽ͕ਐ ΜͰ͍ΔϠΫϧτ֎ਞͷएฦΓͷτοϓʹͳΕΔΑ ͏ͳ׆༂Λظ ✤ ૉΒ͍͠߈ܸྗʹΦʔϓϯઓ౪ྥԦͷ࣮ྗΛ׆͔ͤ Εɺ͍ۙࢁాબखͱͷτϦϓϧεϦʔίϯϏ͕ੜ ·ΕΔ…͔͠Εͳ͍
·ͩ·͍ͩΔͧʂ
ٽ͖ͷՃհ ✤ հ͔͚ͨͬͨ͠Ͳ࣌ؒͷ߹্Β͟ΔΛಘͳ͔ͬ ͨબखΛ໊લͱɺηʔϧϙΠϯτΛҰݴड़͍͖ͯ· ͢
ࡕਆλΠΨʔεɾਅख ✤ ࠷150km/hͷٿʹεϥΠμʔɺ ΧʔϒɺνΣϯδΞοϓΛૢΔظ ͷएखख ✤ ηʔϧϙΠϯτʮ੍ٿྗʯ ✤ ࡢ2܉Ͱ27ΠχϯάΛ࢛͛ٿ Θ͔ͣʮ3ʯ
✤ ͜ΕࡢେϒϨΠΫΛՌͨͨ͠ɺ ΦϦοΫεࢁຊ༝৳खͷ1ͷ ʹඖఢ͢Δ 19985݄25ੜ·Εʢ20ࡀʣ 2016υϥϑτ4Ґ ӈӈଧɹख
ઍ༿ϩοςϚϦʔϯζɾӬক࢘ख ✤ ࠨ͔Β࠷150km/hΛ܁Γग़͢ ٿϦϦʔόʔ ✤ ηʔϧεϙΠϯτɺʮୣࡾৼྗʯ ✤ 2܉Ͱ22ࢼ߹ʹ͛ ୣࡾৼɿ12.43 K/BBɿ7.25
ɹͷѹרϐονϯάΛ൸࿐ ✤ ࠓɺʮڪාʯΛެදɻݸ ਓతʹԠԉ͍ͨ͠બखɻ 19933݄2ੜ·Εʢ26ࡀʣ 2017υϥϑτ6Ґ ࠨࠨଧɹख
Ҏ্Ͱ͢ ✤ օ͞Μɺࣗਪ͠ͷएखબख͍·ͨ͠Ͱ͠ΐ͏͔ʁ ࠓճڈͷ2܉ΛݩʹϐοΫΞοϓͨ͠ͷͰɺ ࣈʹݱΕͯͳ͍͚ͲظͰ͖Δएखબख·ͩ·ͩ ͍Δͱࢥ͍·͢ ✤ ʮ͜ͷબख͍͍ͧʂʯͬͯબख͕͍Εͥͻͥͻڭ͑ ͖͍ͯͨͰ͢ʙ
͝੩ௌɺ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ