Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20240222_LangChain_ver0.1.0_LCEL
Search
Kazuki Maeda
February 22, 2024
Technology
4
390
20240222_LangChain_ver0.1.0_LCEL
https://chatgpt.connpass.com/event/307586/
での登壇資料
Kazuki Maeda
February 22, 2024
Tweet
Share
More Decks by Kazuki Maeda
See All by Kazuki Maeda
生成AIを用いた 新しい学びの体験を 提供するまでの道のり
kzkmaeda
0
170
生成AIによって変わる世界 -可能性とリスクについて考える-
kzkmaeda
2
210
新しいことを組織ではじめる、そしてつづける
kzkmaeda
5
840
20240824_JAWS_PANKRATION_2024
kzkmaeda
0
63
20240416_devopsdaystokyo
kzkmaeda
1
400
20240321_生成AI時代のDevOps
kzkmaeda
2
1.1k
20240201_クラウド利用料を 半額にするために取り組んだ10+のコト
kzkmaeda
4
7.3k
20231027_Bedrock勉強会
kzkmaeda
3
1.3k
20231011_LangChainコントリビュートのすゝめ
kzkmaeda
0
1.3k
Other Decks in Technology
See All in Technology
srekaigi2025-hajimete-ippo-aws
masakichieng
0
190
20250125_Agent for Amazon Bedrock試してみた
riz3f7
2
110
消し忘れリソースゼロへ!私のResource Explorer活用法
cuorain
0
130
日本語プログラミングとSpring Bootアプリケーション開発 #kanjava
yusuke
1
310
サービスローンチを成功させろ! 〜SREが教える30日間の攻略ガイド〜
mmmatsuda
2
3.9k
HCP Terraformで実現するPlatform Engineering/nikkei-tech-talk-29
nikkei_engineer_recruiting
0
210
ブロックチェーンR&D企業における SREの実態 / SRE Kaigi 2025
datachain
0
3.5k
Mocking your codebase without cursing it
gaqzi
0
140
財務データを題材に、 ETLとは何であるかを考える
shoe116
5
1.9k
Microsoft Ignite 2024 最新情報!Microsoft 365 Agents SDK 概要 / Microsoft Ignite 2024 latest news Microsoft 365 Agents SDK overview
karamem0
0
180
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
250
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
0
260
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
How to train your dragon (web standard)
notwaldorf
89
5.8k
Producing Creativity
orderedlist
PRO
343
39k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Designing for Performance
lara
604
68k
Rails Girls Zürich Keynote
gr2m
94
13k
Embracing the Ebb and Flow
colly
84
4.5k
Transcript
LangChain浦島太郎状態から v0.1.0とLCELについていきたい ChatGPT Meetup Tokyo #6 @kzk_maeda
自己紹介 Kazuki Maeda 𝕏 @kzk_maeda SRE/DRE/EM @atama plus AWS Community
Builders AWS Startup Community Core Member
自己紹介 しばらく触ってないな・・
なんとか ついていきたい
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
Official Release Blogの概要 LangChain公式のRelease Blogには下記の項目でv0.1.0の紹介がされている • Introduction • Third Party
Integrations • Observability • Composability • Streaming • Output Parsing • Retrieval • Agents • LangChain 0.2 https://blog.langchain.dev/langchain-v0-1-0/
Introduction - Architectureの進化 • packageを分割して堅牢性と拡張性を向上 ◦ core ◦ community ◦
partner ◦ … • 個々にバージョン管理されていく • Backward compatibilityのため langchain packageは残る
Third Party Integrations - パッケージの分割 • 700+のIntegrationがあり、これがLangChainの強み • これまでは個々のlibrary依存関係がupgradeの足枷になっていたが、その影響を軽 減可能に
• community ◦ 多くの3rd party integrationのコードが記述されている • partner ◦ openaiやgoogle-vertexaiなどが個別のpackage化されており、 より安定して運用できる • langchain packageには移設先のコードへのInterfaceが残され、後方互換を 担保している
Observability - LangSmithの拡大 • LangSmithを用いた可観測性の拡大 • 先日の発表でprivate-betaから GAされた • in-VPCで立ち上がる
Enterprise editionの計画もある
Composability - LCELを標準記法に • LangChain Expression Language(LCEL)を標準記法として拡張していく • Legacy VersionのChainがあるが、LCELが十分に浸透するまでLegacyを非推奨に
することはないとのこと
Output Parsing - LLMをToolsとして扱う • LLMをtoolとして、別のツールへのinputとするユースケースにおいて 下流のアプリケーションに渡すデータの構造化が課題 • LLMの出力にデータフォーマットと型の指定を渡すことでシステム間連携 の容易性を上げる
◦ JSON、XML、Yamlなどのファイルタイプ指定が可能 • 完全に型強制をかけるというより、 promptの中で出力のデータ型を指定するという実 装だった ◦ validationをかけられるParserもあるので、使用する場合は調査が必要
Other - その他項目のwrap up • Streaming ◦ 完全な応答を待たず、応答の家庭を streaming dataとして返す
◦ LECLに対応 • Retrieval ◦ ingestion - index生成APIを公開 ◦ retrieval - 学術的なretrievalや独自のロジックを実装 ▪ retrievalの際、個人がアクセスできるdocsに認可制御をかけられる • Agents ◦ updateに関する話は少なめ • LangChain 0.2 ◦ すでに0.2の計画は立っており、今後は安定的な minor verupを予定
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
install packageのバージョン更新 • 手元のapplicationで、langchain v0.1.8への更新と、分割されたpackageの導入を実 施
packageの参照を更新 • 種類によって、core/community/partnerのどれをimportするかが異なる • text_splitterなど、langchain package自体に残っているものもある ◦ architecture上、個別のusecaseに特化した機能はlangchain layerに残る
(余談)BedrockをPartner Packageに・・ • OpenAIやVertexAIはPartner Packageに所属しているのに、Bedrockは Community Packageに所属している・・ • Discussionを起票しているので、 賛同される型はvoteお願いします!
https://github.com/langchain-ai/langchain/discussions/17912
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
(再掲)Composability - LCELを標準記法に • LangChain Expression Language(LCEL)を標準記法として拡張していく • Legacy VersionのChainがあるが、LCELが十分に浸透するまでLegacyを非推奨に
することはないとのこと
LCELの構成要素 • 基本的な prompt + model + output parser のパターン
• 各インスタンスをunix pipe operatorのように記述してデータの流れを宣言 • Runnableと呼ばれるI/Fを実装しており、共通の呼び出しメソッドを持つ
改めて、LCELとは • 複雑なchainをsimpleに記述することができる • 公式ドキュメントの例→ ◦ ※全てのusecaseを盛り込んだ場合の記述量の差
LCELはどのように実装されているか • Runnable*という基底クラスの __or__ メソッドをオーバーライドすることで Unix Pipe Operator型のI/Fを実現 • 個々のクラスはRunnable*を継承して実装されている
LCELはどう進化していく?(個人的主観) • データパイプラインの実装がより直感的に記述できるようになっていく? ◦ Apache AirflowのようにDAGの実装をより直感的にできると嬉しい
Agenda • LangChain v0.1.0のおさらい • v0.1.0への移行 • LECLに入門 • まとめ
LangChain v0.1.0 / LECLについて • LangChain初のstable versionがリリースされました! ◦ メインはarchitectureの進化で、これからの拡張に耐えられる ソフトウェア設計に移行されている
◦ LCELはcoreに位置付けられ、今後はLCEL I/Fを中心に進化していく • LCELはこれからbasic useになっていきます! ◦ 現状でも、シンプルにchainを記述できるようになります ◦ DAGに則ったデータフローをよりシンプルに記述できるよう 進化してくれると嬉しいなぁ