Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Spatial Biology US 2021

Spatial Biology US 2021

Leonardo Collado-Torres

September 29, 2021
Tweet

More Decks by Leonardo Collado-Torres

Other Decks in Science

Transcript

  1. Extending Spatial Analysis with R/Bioconductor and beyond Spatial Biology US

    2021 Leonardo Collado Torres @lcolladotor 2021-09-29 Slides: https://speakerdeck.com/lcolladotor
  2. LIEBER INSTITUTE for BRAIN DEVELOPMENT About Bioconductor Bioconductor provides tools

    for the analysis and comprehension of high-throughput genomic data. Bioconductor uses the R statistical programming language, and is open source and open development. http://bioconductor.org/
  3. LIEBER INSTITUTE for BRAIN DEVELOPMENT R/Bioconductor packages (BioC 3.12 from

    October 2020) • Software: 1975 (2041 in 05/2021) • Annotation: 971 • Experimental Data: 398 • Workflow guides: 28 http://bioconductor.org/packages/release/BiocViews.html#___Software
  4. 5 SpatialExperiment: infrastructure for spatially resolved transcriptomics data in R

    using Bioconductor Righelli, Weber, Crowell, et al, bioRxiv, 2021 DOI 10.1101/2021.01.27.428431 Dario Righellli Helena L Crowell @drighelli @CrowellHL Lukas M Weber @lmwebr
  5. @lmwebr Lukas M Weber @lcolladotor Leonardo Collado-Torres @abspangler Abby Spangler

    @PardoBree Brenda Pardo • Opportunity to lead • SpatialExperiment: common infrastructure • STexampleData: example datasets • spatialLIBD: visualization functions & shiny app • ggspavis: visualization • Pre-prints for SpatialExperiment & spatialLIBD • Some conversations with other developers to bring them into the Bioconductor world
  6. Spatial registration of your sc/snRNA-seq data Your sc/snRNA-seq data Our

    spatial data Hodge et al, Nature, 2019 Maynard, Collado-Torres, Nat Neuro, 2021
  7. Visium Image Processing Pipeline : VistoSeg STEPS (MATLAB) 1. Import

    2. Split 3. Segment 4. Count 5. Visualize @MadhaviTippani Madhavi Tippani
  8. Preprint: VistoSeg: a MATLAB pipeline to process, analyze and visualize

    high resolution histology images for Visium spatial transcriptomics data https://doi.org/10.1101/2021.08.04.452489 Tutorial: http://research.libd.org/VistoSeg Pipeline: https://github.com/LieberInstitute/VistoSeg Work in progress: 1. Modify pipeline to import and process multichannel Immuno Fluorescence images. 2. Extract cell type and cell morphology information and use it for downstream transcriptomics analysis. Spot Barcode X coordinate Y coordinate Tissue Present - 1 Absent - 0 Cell count %Spot covered spot1 1 2 1 3 90% spot2 1 4 0 0 0%
  9. OSTA: https://lmweber.org/OSTA-book/ @lmwebr Lukas M Weber @lcolladotor Leonardo Collado-Torres @abspangler

    Abby Spangler @HeenaDivecha Heena R Divecha @MadhaviTippani Madhavi Tippani @stephaniehicks Stephanie C Hicks
  10. OSTA: https://lmweber.org/OSTA-book/ • Similar to OSCA https://bioconductor.org/books/release/OSCA/ ◦ Bioconductor-friendly (CRAN/BioC,

    not GitHub) or available via pip ◦ Centered around SpatialExperiment and Visium by 10x Genomics ◦ macOS / winOS / linux • Main chapters for: ◦ Pre-processing steps: outside R ◦ Analysis steps • Workflow chapters: ◦ Illustrate the commands discussed earlier adapted for a few datasets ◦ Not standalone Bioconductor workflows http://bioconductor.org/packages/release/BiocViews.html#___Workflow ◦ One more detailed workflow on using spatialLIBD • Paper / pre-print coming soon
  11. Visium * ~5k spots in honeycomb * gene expression per

    spot * tissue (H&E staining) Immunofluorescence (IF) * multi-channel (6) images * identifies morphological features of interest * large: might be broken in tiles Channel 1 * triangle feature Channel 2 * cloud feature Channel 6 * xyz feature Tissue (bright field image) Visium spot Channel 1 feature Channel 2 feature + Visium IF raw data: 2 types
  12. Spot ID Gene 1 Gene 2 Gene X spot0001 0

    12 39 spot0002 4 0 27 Spot ID Gene 1 Gene 2 Gene X In Tissue # cells spot0001 0 12 39 true 3 spot0002 4 0 27 false 0 * spaceranger * Loupe Browser * VistoSeg on H&E bright field image Visium Analysis @MadhaviTippani @HeenaDivecha cell
  13. Feature ID X center Y center type intensity feat0001 5

    102 triangle 130.4 feat0002 10 30 cloud 99.1 Max (X, Y) Min (X, Y) Area ... IF Image Analysis * segment each channel * find features Challenges: * morphological features can be quite diverse * images are large * multiple tiles +
  14. Feature ID X center Y center type intensity Spot ID(s)

    feat0001 5 102 triangle 130.4 spot0001 feat0002 10 30 cloud 99.1 spot0001 spot0002 Spot ID # Triangle # Cloud % triangle % cloud spot0001 0 12 0 17 spot0002 4 0 27 0 Merge Visium & IF Align & use Visium spot design info Add export by spot ID capability basic data: number of features advanced data: %, intensity, co-localization (features overlap), ...
  15. Spot ID # Triangle # Cloud % triangle % cloud

    spot0001 0 12 0 17 spot0002 4 0 27 0 Merge Visium & IF IF Spot ID Gene 1 Gene 2 Gene X In Tissue # cells spot0001 0 12 39 true 3 spot0002 4 0 27 false 0 Visium downstream * QC * analyses @lmwebr @stephaniehicks @abspangler
  16. @MadhaviTippani Madhavi Tippani @HeenaDivecha Heena R Divecha @lmwebr Lukas M

    Weber @stephaniehicks Stephanie C Hicks @abspangler Abby Spangler @martinowk Keri Martinowich @CerceoPage Stephanie C Page @kr_maynard Kristen R Maynard @lcolladotor Leonardo Collado-Torres @Nick-Eagles (GH) Nicholas J Eagles Kelsey D Montgomery Sang Ho Kwon Image Analysis Expression Analysis Data Generation In collaboration with Thomas M Hyde