Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
rでgoogle_analyticsデータ解析にチャレンジ #TechLunch
Search
Livesense Inc.
PRO
April 23, 2014
Technology
0
98
rでgoogle_analyticsデータ解析にチャレンジ #TechLunch
2011/05/25(水) @ Livesense TechLunch
発表者:福田 絵里
Livesense Inc.
PRO
April 23, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_総合職採用_会社説明資料
livesense
PRO
0
1.4k
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
5.1k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
130
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.6k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
510
26新卒_総合職採用_会社説明資料
livesense
PRO
0
12k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
2
47k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
280
Other Decks in Technology
See All in Technology
意外とあった SQL Server 関連アップデート + Database Savings Plans
stknohg
PRO
0
310
学習データって増やせばいいんですか?
ftakahashi
2
330
グレートファイアウォールを自宅に建てよう
ctes091x
0
150
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
440
30分であなたをOmniのファンにしてみせます~分析画面のクリック操作をそのままコード化できるAI-ReadyなBIツール~
sagara
0
140
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
720
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.2k
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
620
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
280
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
280
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
190
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.5k
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Being A Developer After 40
akosma
91
590k
Building Adaptive Systems
keathley
44
2.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Making Projects Easy
brettharned
120
6.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How GitHub (no longer) Works
holman
316
140k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Transcript
RでGoogleAnalyticsデータ解析 にチャレンジ Eri Fukuda 2011/05/25
Contents 目的 Rを利用して、Google Analytics Data Export APIからデータを取り出 し、ブラウザ経由からのAnalyticsでは得られない情報を出力する。 1. R言語
2. Google Analytics Data Export API 3. 実践・データ解析
1. R言語
1. R言語 グラフィックス データのグラフ・図解化機能が柔軟 (日本地図も書けちゃう!) 電卓 お手軽多機能電卓 統計 最小限の労力で、見通しよく解析するために 工夫された命令体系
1. R言語 • ベクトル処理言語 ✗ ベクトル:構造を持ったデータ集合 ✗ 構造:配列、リスト、テーブル、集合、時系列、など f1 <-
c('猫','猫','犬') f2 <- c(1, 2, 3) f <- list(field1=f1, field2=f2) f$field1 の中に "猫" "猫" "犬" f$field2 の中に 1 2 3 X <- 1:3 x の中に 1 2 3
1. R言語 • オブジェクト指向 • 多様なデータ形式に対応 • 柔軟なパッケージ管理 「CRAN」 •
単純な文法 対象ユーザー:統計処理に関わる全ての人々 • 統計学を超えた需要(金融工学・時系列分析・機械学習・データマイニ ング・バイオインフォマティクス) • 高速な処理 C、C++、FORTRANなどの外部プログラムとの動的リンク • シミュレーション 「ex. 円周率をモンテカルロ法で近似する計算」 • デメリット:デバッグ機能が乏しい テキスト, 画像, csv, SPSS, SAP, 各種データベースへのアクセス s <-100000 x <-runif(s) y <-runif(s) sum(x^2+y^2<=1)*4/s
2. Google Analytics Data Export API
2. Google Analytics Data Export API 認証 Analytics アカウント のクエリ
※認証の種類 ClientLogin : インストールするアプリケーションに適する AuthSub : ウェブアプリケーションに適する OAuth : ウェブアプリケーションに適する(API認可プロトコルの標準仕様) プロファイル のクエリ デ ー タ 出 力
• データフィードリクエスト ✔ (必須) ベースURL ✔ (必須) ids ✔ (必須)
metrics ✔ (必須) start-date, end-date ✔ (オプション) dimensions https://www.google.com/analytics/feeds/data ids=ga:12345 metrics=ga:visits, ga:timeOnSite start-date=2009-04-20 end-date=2009-05-20 dimensions=ga:browser, ga:city 2. Google Analytics Data Export API etc...
レスポンスデータが膨大な量だったら… →自動的にサンプリングが行われる ※Google Analytics は 95% の信頼水準で計算を実行。 ex) confidenceInterval=5
指標にレポートされた値が実際は推定値であるものの、その差は +/- 5% 未満 confidenceInterval=INF 計算された推定値の正確性が高くない 誤差を避け、レスポンス取得を高速するには↓ レスポンス量の制限、日付範囲を狭める、フィルタ利用 2. Google Analytics Data Export API
3. 実践・データ解析
3. 実践・データ解析 Google Analytics Data Export APIにアクセスする ためのRライブラリ 「RGoogleAnalytics.R」利用 •
対象メディア : ArbeitStock(モバイル)
3. 実践・データ解析 install.packages("RCurl", repos = "http://www.omegahat.org/R") install.packages("XML", repos = "http://www.omegahat.org/R")
source("./RGoogleAnalytics.R") source("./QueryBuilder.R") ga <- RgoogleAnalytics() options(RCurlOptions = list(capath = system.file("CurlSSL", "cacert.pem", package = "RCurl"), ssl.verifypeer = FALSE)) ga$SetCredentials("INSERT_USER_NAME", "INSERT_PASSWORD") profiles <- ga$GetProfileData() query <- QueryBuilder() query$Init(start.date = "2011-04-01", end.date = "2011-05-19", dimensions = "ga:date", metrics = "ga:visitors", sort = "ga:date", table.id = “ga:17971510”) ga.data <- ga$GetReportData(query) ga.data$data
3. 実践・データ解析 ga:date ga:visitors 1 20110401 68115 2 20110402 61374
3 20110403 61534 4 20110404 73177 5 20110405 70203 6 20110406 73578 7 20110407 70671 8 20110408 65500 9 20110409 61334 10 20110410 61900 11 20110411 70116 12 20110412 71046 13 20110413 73709 14 20110414 73057 15 20110415 67227 16 20110416 61849 17 20110417 61318 18 20110418 74123 19 20110419 75127 20 20110420 73523 21 20110421 71382 22 20110422 65705 23 20110423 59311 24 20110424 58189 25 20110425 73068 26 20110426 72271 27 20110427 69971 28 20110428 65095 29 20110429 56280 30 20110430 53978 31 20110501 51534 32 20110502 55387 33 20110503 47268 34 20110504 47388 35 20110505 51924 36 20110506 59751 37 20110507 59566 38 20110508 54855 39 20110509 78166 40 20110510 69305 41 20110511 70390 42 20110512 67156 43 20110513 67756 44 20110514 56160 45 20110515 57186 46 20110516 74349 47 20110517 72700 48 20110518 68453 49 20110519 69723 出力結果
RでGoogleAnalyticsデータ解析(実践編) 次回テーマ