Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player p...
Search
Shinichi Nakagawa
PRO
July 22, 2020
Research
0
3.1k
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player performance prediction with Python
PyCon JP 2020で話す予定の話のダイジェストです.
kawasaki.rb #86 での練習試合.
#Python #DataScience #MLB #Baseball
Shinichi Nakagawa
PRO
July 22, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
97
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
4.8k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
4.6k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
450
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.4k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.1k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
85
87k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.4k
Other Decks in Research
See All in Research
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
800
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
170
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
数理最適化に基づく制御
mickey_kubo
6
730
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
8k
近似動的計画入門
mickey_kubo
4
1k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
能動適応的実験計画
masakat0
2
810
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
360
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
110
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Practical Orchestrator
shlominoach
190
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Gamification - CAS2011
davidbonilla
81
5.4k
Optimizing for Happiness
mojombo
379
70k
Facilitating Awesome Meetings
lara
55
6.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Transcript
ٿબखͷ༧ଌϞσϧΛ ͍͍ײ͡ʹ࡞ͬͯΈͨVer 1.0 Shinichi Nakagawa (@shinyorke) kawasaki.rb #86 7पͪΐͬͱLTେձ
Who am I ? • Shinichi Nakagawa(@shinyorke) • JX௨৴ࣾγχΞɾΤϯδχΞ •
࠷ۙͣͬͱσʔλج൫ɾσʔλੳ͍ͯ͠ΔϚϯ • ຊདྷٿσʔλαΠΤϯεʹڧ͍ਓ • ٕज़ސ͡Ί·ͨ͠
kwsk.pyҊ݅Ͱ͢ :bow: PyCon JPʹ2ͿΓ6ճͷ⽁Λ͢Δ͜ͱʹͳΓ·ͯ͠. ٱ͠ͿΓʹนଧͪʹͬͯ·͍Γ·͓͖ͨ͠߹͍͍ͩ͘͞⽁
ʲਤʳࠓճ͖ͬͯͨ͜ͱ ຊ֨తͳ։ൃ4݄͔Β, ࠷ޙͷλεΫ͕௨ͬͨͷ͕͍ͭ࠷ۙ اըɾߏؚΊΔͱ࣮͍ۙϓϩδΣΫτͩͬͨΓ
None
σʔληοτ࡞ɾಛྔநग़ • ϝδϟʔϦʔάͷσʔλʮSean Lahmanʯʮretrosheetʯ ͜ΕΒΛͯ͢BigQueryʹimport • CSV͔Βςʔϒϧ࡞ • ػցֶशλεΫʹඞཁͳಛྔΛ۪ʹࢉग़
ػցֶशλεΫͦͷᶃ ʮࣅ͍ͯΔબखΫϥελΛ࡞Δʯ
कඋҐஔɾͷงғؾͰΫϥελϦϯά • ࡶʹݴ͏ͱ, ʮ˓˓ͬΆ͍બखϥϯΩϯάʯΛ࡞Δ • ྫ͑ࡔຊ༐ਓʢڊਓʣͬΆ͍બखʁͱݴΘΕͨΒ, ʮकඋҐஔ͕γϣʔτʯʮৗʹ3ׂ20ຊྥଧଧͭʯ ͱ͔ͦΜͳײ͡. γϣʔτͰ͋Δ͜ͱϚετ, ͋ͱଧܸ࣍ୈ.
• ଧܸ͓ΑͼҰ෦ͷकඋࢦඪΛͬͯϢʔΫϦουڑΛ ٻΊͯ૯ΓͰ֤બखͷʮͦΕͬΆ͍ϥϯΩϯάʯΛ࡞Εͦ͏.
ۙࣅ࠷ۙ୳ࡧʢANNʣͰͬͯΈͨ • kNNͱ͔k-meansͱ͔Γํ৭ʑ͚͋ͬͨͲANNͰͬͨ݁Ռ ͕͍͖ͳΓ͍͍ײͩͬͨ͡ͷͰ͜Εʹͨ͠. • ANNͷλεΫAnnoy͍ͬͯ͏ϥΠϒϥϦͰര։ൃ. • ϝδϟʔϦʔΨʔ19,000ਓͷσʔλͰͬͨΒ͍͍ײ͡ʹ.
ίʔυʢҰ෦ൈਮʣ˞ಛྔൿີ ֶश͔ΒϞσϧอଘͨͬͨ͜Ε͚ͩ. σʔλେ͖͘ͳ͍ͷͰඵͰऴΘΓ·ͨ͠.
ϚοτɾνϟοϓϚϯʢMLBएखࡾྥखʣʹ͍ۙબख ٬؍తͳσʔλ͔Β, ϑΝϯͱͯͬͯ͠Δͱͯ͠. ͍ۙબख͕ͪΌΜͱू·Γ·ͨ͠, શһࡾྥखͰଧܸͰ݁Ռग़ͤΔϚϯͳͷͰจ۟ͳ͠ʂ
ࣅ͍ͯΔબखूΊʹޭ ʢଞͷϙδγϣϯ͍͍ײͩͬͨ͡ʣ ޙ͔ͬ͜ΒߋʹΧςΰϦʔྨͯ͠ ʮະདྷͷΛ࡞ΓࠐΉʯ ࣄ͕Ͱ͖ͨΒʂ
ػցֶशλεΫͦͷᶄ ʮಉ͡ΧςΰϦͷબखΛݟ͚ͭΔʯ
φΠʔϒϕΠζʹΑΔΧςΰϦʔ͚ • ࣗવݴޠॲཧͷྨλεΫΈ͍ͨͳղ͖ํͰͬͯΈͨ. • ީิʮφΠʔϒϕΠζʯʮϥϯμϜϑΥϨετʯ͋ͨΓ. ࠓճφΠʔϒϕΠζͰͬͨ. • ٿʹ͓͚Δ౷߹తͳೳྗࢦඪʮOPSʯΛ͝ͱͷΧςΰϦʔʹ͚, ͍͔ͭ͘ͷଧܸࢦඪΛϕΫτϧʹ࣮ͯ͠ࢪ. •
࣮ී௨ʹscikit-learnͱPandasͰΓ·ͨ͠.
ͬͨ͜ͱʢཁʣɹ˞ࡶʹॻ͍ͯ·͢ • ֶशσʔλ • ༧ଌ͍ͨ͠બखʹࣅͨબख50ਓͷΛϐοΫΞοϓ • ಛྔൿີͰ͕͢…ී௨ͷଧܸʹӅ͠ຯগʑ • ༧ଌσʔλ •
༧ଌ͍ͨ͠બखͷಛྔ • ݁Ռͷϥϕϧσʔλ • OPSΛ5ஈ֊ͷΧςΰϦʹͨ͠ͷ(1ʙ5) • ্هͰࢦఆͨ͠ΧςΰϦʹଐ͢Δબखͷྸผฏۉ͔ΒͦΕͬΆ͍Λग़͢
༧ଌͱҰॹʹݟͯΈ·͠ΐ͏͔.
ϚοτɾνϟοϓϚϯʢݱ࣮ͷʣ 24ʙ26ࡀʢڈ·Ͱʣͷ. ༧ଌ͍ͨ͠ͷ27ʙ29ࡀͷ.
ϚοτɾνϟοϓϚϯʢ༧ଌ͖ʣ 27ࡀҎ߱ͷΛ༧ଌͨ݁͠ՌΛؚΊͨάϥϑ.
None
ग़͖ͯͨ݁ՌΛ͡Δͱ… • ൺֱత, ݱ࣮ʹଈͯ͠ΔͬΆ͍݁ՌʹͳΓ·ͨ͠. • ʮ28ࡀͷ͕Maxʯʮ29ࡀ͔ΒԼ͕ͬͯΔʯͨΓ͕ϦΞϧ. ※ΞεϦʔτͷମత࠷ߴை26ʙ28ࡀͱݴΘΕ͍ͯ·͢ • ͱ͍͑28ࡀͷຊྥଧ্͕͕ͬͯΔͷ, ͳΜ͔ո͍͠.
͓ͦΒ͘୭͔ͷʹҾͬுΒΕ͍ͯΔ.
Γ͠ɾվળϙΠϯτ • ࠷ޙͷྨ, ϕΠζҎ֎ࢼ͍ͨ͠. • ʮ28ࡀΛʹਰ͑ΔʯϙδγϣϯʹΑͬͯҧ͏આ͋Δ. ͷͰʮ্ͷʯΛٻΊΔλεΫ͕͍͍͔͋ͬͯ. • 2020ͷϝδϟʔϦʔάྫͷͷࢼ߹ͳͷͰ, ༧ଌͦ͜ʹ߹Θ͍ͤͨʢ2ͰׂͬͯऴΘΔʁwʣ
• ͱ͍͏ͷ͕PyCon JP 2020·ͰʹͰ͖ͯΔͣʢVer. 25ʮTsurageʯͰʣ
ଓ͖PyCon JP 2020Ͱʂ #͓͠·͍ #͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)