Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player p...
Search
Shinichi Nakagawa
PRO
July 22, 2020
Research
0
3.1k
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player performance prediction with Python
PyCon JP 2020で話す予定の話のダイジェストです.
kawasaki.rb #86 での練習試合.
#Python #DataScience #MLB #Baseball
Shinichi Nakagawa
PRO
July 22, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
98
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
4.8k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
4.6k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
450
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.4k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.1k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
85
87k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
shinyorke
PRO
1
1.4k
Other Decks in Research
See All in Research
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
0
170
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
770
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
550
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
電力システム最適化入門
mickey_kubo
1
920
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
170
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
110
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
140
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
210
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
520
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
290
Featured
See All Featured
Embracing the Ebb and Flow
colly
87
4.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Making Projects Easy
brettharned
117
6.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Practical Orchestrator
shlominoach
190
11k
Unsuck your backbone
ammeep
671
58k
Agile that works and the tools we love
rasmusluckow
330
21k
Transcript
ٿબखͷ༧ଌϞσϧΛ ͍͍ײ͡ʹ࡞ͬͯΈͨVer 1.0 Shinichi Nakagawa (@shinyorke) kawasaki.rb #86 7पͪΐͬͱLTେձ
Who am I ? • Shinichi Nakagawa(@shinyorke) • JX௨৴ࣾγχΞɾΤϯδχΞ •
࠷ۙͣͬͱσʔλج൫ɾσʔλੳ͍ͯ͠ΔϚϯ • ຊདྷٿσʔλαΠΤϯεʹڧ͍ਓ • ٕज़ސ͡Ί·ͨ͠
kwsk.pyҊ݅Ͱ͢ :bow: PyCon JPʹ2ͿΓ6ճͷ⽁Λ͢Δ͜ͱʹͳΓ·ͯ͠. ٱ͠ͿΓʹนଧͪʹͬͯ·͍Γ·͓͖ͨ͠߹͍͍ͩ͘͞⽁
ʲਤʳࠓճ͖ͬͯͨ͜ͱ ຊ֨తͳ։ൃ4݄͔Β, ࠷ޙͷλεΫ͕௨ͬͨͷ͕͍ͭ࠷ۙ اըɾߏؚΊΔͱ࣮͍ۙϓϩδΣΫτͩͬͨΓ
None
σʔληοτ࡞ɾಛྔநग़ • ϝδϟʔϦʔάͷσʔλʮSean Lahmanʯʮretrosheetʯ ͜ΕΒΛͯ͢BigQueryʹimport • CSV͔Βςʔϒϧ࡞ • ػցֶशλεΫʹඞཁͳಛྔΛ۪ʹࢉग़
ػցֶशλεΫͦͷᶃ ʮࣅ͍ͯΔબखΫϥελΛ࡞Δʯ
कඋҐஔɾͷงғؾͰΫϥελϦϯά • ࡶʹݴ͏ͱ, ʮ˓˓ͬΆ͍બखϥϯΩϯάʯΛ࡞Δ • ྫ͑ࡔຊ༐ਓʢڊਓʣͬΆ͍બखʁͱݴΘΕͨΒ, ʮकඋҐஔ͕γϣʔτʯʮৗʹ3ׂ20ຊྥଧଧͭʯ ͱ͔ͦΜͳײ͡. γϣʔτͰ͋Δ͜ͱϚετ, ͋ͱଧܸ࣍ୈ.
• ଧܸ͓ΑͼҰ෦ͷकඋࢦඪΛͬͯϢʔΫϦουڑΛ ٻΊͯ૯ΓͰ֤બखͷʮͦΕͬΆ͍ϥϯΩϯάʯΛ࡞Εͦ͏.
ۙࣅ࠷ۙ୳ࡧʢANNʣͰͬͯΈͨ • kNNͱ͔k-meansͱ͔Γํ৭ʑ͚͋ͬͨͲANNͰͬͨ݁Ռ ͕͍͖ͳΓ͍͍ײͩͬͨ͡ͷͰ͜Εʹͨ͠. • ANNͷλεΫAnnoy͍ͬͯ͏ϥΠϒϥϦͰര։ൃ. • ϝδϟʔϦʔΨʔ19,000ਓͷσʔλͰͬͨΒ͍͍ײ͡ʹ.
ίʔυʢҰ෦ൈਮʣ˞ಛྔൿີ ֶश͔ΒϞσϧอଘͨͬͨ͜Ε͚ͩ. σʔλେ͖͘ͳ͍ͷͰඵͰऴΘΓ·ͨ͠.
ϚοτɾνϟοϓϚϯʢMLBएखࡾྥखʣʹ͍ۙબख ٬؍తͳσʔλ͔Β, ϑΝϯͱͯͬͯ͠Δͱͯ͠. ͍ۙબख͕ͪΌΜͱू·Γ·ͨ͠, શһࡾྥखͰଧܸͰ݁Ռग़ͤΔϚϯͳͷͰจ۟ͳ͠ʂ
ࣅ͍ͯΔબखूΊʹޭ ʢଞͷϙδγϣϯ͍͍ײͩͬͨ͡ʣ ޙ͔ͬ͜ΒߋʹΧςΰϦʔྨͯ͠ ʮະདྷͷΛ࡞ΓࠐΉʯ ࣄ͕Ͱ͖ͨΒʂ
ػցֶशλεΫͦͷᶄ ʮಉ͡ΧςΰϦͷબखΛݟ͚ͭΔʯ
φΠʔϒϕΠζʹΑΔΧςΰϦʔ͚ • ࣗવݴޠॲཧͷྨλεΫΈ͍ͨͳղ͖ํͰͬͯΈͨ. • ީิʮφΠʔϒϕΠζʯʮϥϯμϜϑΥϨετʯ͋ͨΓ. ࠓճφΠʔϒϕΠζͰͬͨ. • ٿʹ͓͚Δ౷߹తͳೳྗࢦඪʮOPSʯΛ͝ͱͷΧςΰϦʔʹ͚, ͍͔ͭ͘ͷଧܸࢦඪΛϕΫτϧʹ࣮ͯ͠ࢪ. •
࣮ී௨ʹscikit-learnͱPandasͰΓ·ͨ͠.
ͬͨ͜ͱʢཁʣɹ˞ࡶʹॻ͍ͯ·͢ • ֶशσʔλ • ༧ଌ͍ͨ͠બखʹࣅͨબख50ਓͷΛϐοΫΞοϓ • ಛྔൿີͰ͕͢…ී௨ͷଧܸʹӅ͠ຯগʑ • ༧ଌσʔλ •
༧ଌ͍ͨ͠બखͷಛྔ • ݁Ռͷϥϕϧσʔλ • OPSΛ5ஈ֊ͷΧςΰϦʹͨ͠ͷ(1ʙ5) • ্هͰࢦఆͨ͠ΧςΰϦʹଐ͢Δબखͷྸผฏۉ͔ΒͦΕͬΆ͍Λग़͢
༧ଌͱҰॹʹݟͯΈ·͠ΐ͏͔.
ϚοτɾνϟοϓϚϯʢݱ࣮ͷʣ 24ʙ26ࡀʢڈ·Ͱʣͷ. ༧ଌ͍ͨ͠ͷ27ʙ29ࡀͷ.
ϚοτɾνϟοϓϚϯʢ༧ଌ͖ʣ 27ࡀҎ߱ͷΛ༧ଌͨ݁͠ՌΛؚΊͨάϥϑ.
None
ग़͖ͯͨ݁ՌΛ͡Δͱ… • ൺֱత, ݱ࣮ʹଈͯ͠ΔͬΆ͍݁ՌʹͳΓ·ͨ͠. • ʮ28ࡀͷ͕Maxʯʮ29ࡀ͔ΒԼ͕ͬͯΔʯͨΓ͕ϦΞϧ. ※ΞεϦʔτͷମత࠷ߴை26ʙ28ࡀͱݴΘΕ͍ͯ·͢ • ͱ͍͑28ࡀͷຊྥଧ্͕͕ͬͯΔͷ, ͳΜ͔ո͍͠.
͓ͦΒ͘୭͔ͷʹҾͬுΒΕ͍ͯΔ.
Γ͠ɾվળϙΠϯτ • ࠷ޙͷྨ, ϕΠζҎ֎ࢼ͍ͨ͠. • ʮ28ࡀΛʹਰ͑ΔʯϙδγϣϯʹΑͬͯҧ͏આ͋Δ. ͷͰʮ্ͷʯΛٻΊΔλεΫ͕͍͍͔͋ͬͯ. • 2020ͷϝδϟʔϦʔάྫͷͷࢼ߹ͳͷͰ, ༧ଌͦ͜ʹ߹Θ͍ͤͨʢ2ͰׂͬͯऴΘΔʁwʣ
• ͱ͍͏ͷ͕PyCon JP 2020·ͰʹͰ͖ͯΔͣʢVer. 25ʮTsurageʯͰʣ
ଓ͖PyCon JP 2020Ͱʂ #͓͠·͍ #͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)