Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player p...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Shinichi Nakagawa
PRO
July 22, 2020
Research
0
3.1k
ANNとナイーブベイズを使った雑な野球選手の成績予測 / Baseball player performance prediction with Python
PyCon JP 2020で話す予定の話のダイジェストです.
kawasaki.rb #86 での練習試合.
#Python #DataScience #MLB #Baseball
Shinichi Nakagawa
PRO
July 22, 2020
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
270
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.9k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.6k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
510
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
4.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.6k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
460
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
130
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
490
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
370
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
6
3k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
900
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
570
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
160
LLMアプリケーションの透明性について
fufufukakaka
0
120
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
ラッコキーワード サービス紹介資料
rakko
1
2.2M
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
450
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
120
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
We Have a Design System, Now What?
morganepeng
54
8k
Transcript
ٿબखͷ༧ଌϞσϧΛ ͍͍ײ͡ʹ࡞ͬͯΈͨVer 1.0 Shinichi Nakagawa (@shinyorke) kawasaki.rb #86 7पͪΐͬͱLTେձ
Who am I ? • Shinichi Nakagawa(@shinyorke) • JX௨৴ࣾγχΞɾΤϯδχΞ •
࠷ۙͣͬͱσʔλج൫ɾσʔλੳ͍ͯ͠ΔϚϯ • ຊདྷٿσʔλαΠΤϯεʹڧ͍ਓ • ٕज़ސ͡Ί·ͨ͠
kwsk.pyҊ݅Ͱ͢ :bow: PyCon JPʹ2ͿΓ6ճͷ⽁Λ͢Δ͜ͱʹͳΓ·ͯ͠. ٱ͠ͿΓʹนଧͪʹͬͯ·͍Γ·͓͖ͨ͠߹͍͍ͩ͘͞⽁
ʲਤʳࠓճ͖ͬͯͨ͜ͱ ຊ֨తͳ։ൃ4݄͔Β, ࠷ޙͷλεΫ͕௨ͬͨͷ͕͍ͭ࠷ۙ اըɾߏؚΊΔͱ࣮͍ۙϓϩδΣΫτͩͬͨΓ
None
σʔληοτ࡞ɾಛྔநग़ • ϝδϟʔϦʔάͷσʔλʮSean Lahmanʯʮretrosheetʯ ͜ΕΒΛͯ͢BigQueryʹimport • CSV͔Βςʔϒϧ࡞ • ػցֶशλεΫʹඞཁͳಛྔΛ۪ʹࢉग़
ػցֶशλεΫͦͷᶃ ʮࣅ͍ͯΔબखΫϥελΛ࡞Δʯ
कඋҐஔɾͷงғؾͰΫϥελϦϯά • ࡶʹݴ͏ͱ, ʮ˓˓ͬΆ͍બखϥϯΩϯάʯΛ࡞Δ • ྫ͑ࡔຊ༐ਓʢڊਓʣͬΆ͍બखʁͱݴΘΕͨΒ, ʮकඋҐஔ͕γϣʔτʯʮৗʹ3ׂ20ຊྥଧଧͭʯ ͱ͔ͦΜͳײ͡. γϣʔτͰ͋Δ͜ͱϚετ, ͋ͱଧܸ࣍ୈ.
• ଧܸ͓ΑͼҰ෦ͷकඋࢦඪΛͬͯϢʔΫϦουڑΛ ٻΊͯ૯ΓͰ֤બखͷʮͦΕͬΆ͍ϥϯΩϯάʯΛ࡞Εͦ͏.
ۙࣅ࠷ۙ୳ࡧʢANNʣͰͬͯΈͨ • kNNͱ͔k-meansͱ͔Γํ৭ʑ͚͋ͬͨͲANNͰͬͨ݁Ռ ͕͍͖ͳΓ͍͍ײͩͬͨ͡ͷͰ͜Εʹͨ͠. • ANNͷλεΫAnnoy͍ͬͯ͏ϥΠϒϥϦͰര։ൃ. • ϝδϟʔϦʔΨʔ19,000ਓͷσʔλͰͬͨΒ͍͍ײ͡ʹ.
ίʔυʢҰ෦ൈਮʣ˞ಛྔൿີ ֶश͔ΒϞσϧอଘͨͬͨ͜Ε͚ͩ. σʔλେ͖͘ͳ͍ͷͰඵͰऴΘΓ·ͨ͠.
ϚοτɾνϟοϓϚϯʢMLBएखࡾྥखʣʹ͍ۙબख ٬؍తͳσʔλ͔Β, ϑΝϯͱͯͬͯ͠Δͱͯ͠. ͍ۙબख͕ͪΌΜͱू·Γ·ͨ͠, શһࡾྥखͰଧܸͰ݁Ռग़ͤΔϚϯͳͷͰจ۟ͳ͠ʂ
ࣅ͍ͯΔબखूΊʹޭ ʢଞͷϙδγϣϯ͍͍ײͩͬͨ͡ʣ ޙ͔ͬ͜ΒߋʹΧςΰϦʔྨͯ͠ ʮະདྷͷΛ࡞ΓࠐΉʯ ࣄ͕Ͱ͖ͨΒʂ
ػցֶशλεΫͦͷᶄ ʮಉ͡ΧςΰϦͷબखΛݟ͚ͭΔʯ
φΠʔϒϕΠζʹΑΔΧςΰϦʔ͚ • ࣗવݴޠॲཧͷྨλεΫΈ͍ͨͳղ͖ํͰͬͯΈͨ. • ީิʮφΠʔϒϕΠζʯʮϥϯμϜϑΥϨετʯ͋ͨΓ. ࠓճφΠʔϒϕΠζͰͬͨ. • ٿʹ͓͚Δ౷߹తͳೳྗࢦඪʮOPSʯΛ͝ͱͷΧςΰϦʔʹ͚, ͍͔ͭ͘ͷଧܸࢦඪΛϕΫτϧʹ࣮ͯ͠ࢪ. •
࣮ී௨ʹscikit-learnͱPandasͰΓ·ͨ͠.
ͬͨ͜ͱʢཁʣɹ˞ࡶʹॻ͍ͯ·͢ • ֶशσʔλ • ༧ଌ͍ͨ͠બखʹࣅͨબख50ਓͷΛϐοΫΞοϓ • ಛྔൿີͰ͕͢…ී௨ͷଧܸʹӅ͠ຯগʑ • ༧ଌσʔλ •
༧ଌ͍ͨ͠બखͷಛྔ • ݁Ռͷϥϕϧσʔλ • OPSΛ5ஈ֊ͷΧςΰϦʹͨ͠ͷ(1ʙ5) • ্هͰࢦఆͨ͠ΧςΰϦʹଐ͢Δબखͷྸผฏۉ͔ΒͦΕͬΆ͍Λग़͢
༧ଌͱҰॹʹݟͯΈ·͠ΐ͏͔.
ϚοτɾνϟοϓϚϯʢݱ࣮ͷʣ 24ʙ26ࡀʢڈ·Ͱʣͷ. ༧ଌ͍ͨ͠ͷ27ʙ29ࡀͷ.
ϚοτɾνϟοϓϚϯʢ༧ଌ͖ʣ 27ࡀҎ߱ͷΛ༧ଌͨ݁͠ՌΛؚΊͨάϥϑ.
None
ग़͖ͯͨ݁ՌΛ͡Δͱ… • ൺֱత, ݱ࣮ʹଈͯ͠ΔͬΆ͍݁ՌʹͳΓ·ͨ͠. • ʮ28ࡀͷ͕Maxʯʮ29ࡀ͔ΒԼ͕ͬͯΔʯͨΓ͕ϦΞϧ. ※ΞεϦʔτͷମత࠷ߴை26ʙ28ࡀͱݴΘΕ͍ͯ·͢ • ͱ͍͑28ࡀͷຊྥଧ্͕͕ͬͯΔͷ, ͳΜ͔ո͍͠.
͓ͦΒ͘୭͔ͷʹҾͬுΒΕ͍ͯΔ.
Γ͠ɾվળϙΠϯτ • ࠷ޙͷྨ, ϕΠζҎ֎ࢼ͍ͨ͠. • ʮ28ࡀΛʹਰ͑ΔʯϙδγϣϯʹΑͬͯҧ͏આ͋Δ. ͷͰʮ্ͷʯΛٻΊΔλεΫ͕͍͍͔͋ͬͯ. • 2020ͷϝδϟʔϦʔάྫͷͷࢼ߹ͳͷͰ, ༧ଌͦ͜ʹ߹Θ͍ͤͨʢ2ͰׂͬͯऴΘΔʁwʣ
• ͱ͍͏ͷ͕PyCon JP 2020·ͰʹͰ͖ͯΔͣʢVer. 25ʮTsurageʯͰʣ
ଓ͖PyCon JP 2020Ͱʂ #͓͠·͍ #͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)