Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150120 発表資料
Search
Yuta
January 21, 2015
Education
0
160
20150120 発表資料
Yuta
January 21, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
170
NLP2016 報告
sudo
0
190
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
260
20150909 発表資料
sudo
0
140
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
190
20150512 文献紹介
sudo
0
180
Other Decks in Education
See All in Education
マネジメント「される側」 こそ覚悟を決めろ
nao_randd
10
5.4k
SkimaTalk Teacher Guidelines
skimatalk
0
790k
検索/ディスプレイ/SNS
takenawa
0
6.7k
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
110
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
550
America and the World
oripsolob
0
510
ふりかえり研修2025
pokotyamu
0
1.2k
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
150
万博非公式マップとFOSS4G
barsaka2
0
340
Dashboards - Lecture 11 - Information Visualisation (4019538FNR)
signer
PRO
1
2.1k
SARA Annual Report 2024-25
sara2023
1
180
Webリテラシー基礎
takenawa
0
6.7k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Practical Orchestrator
shlominoach
189
11k
A designer walks into a library…
pauljervisheath
207
24k
A Tale of Four Properties
chriscoyier
160
23k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Optimizing for Happiness
mojombo
379
70k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
970
The Language of Interfaces
destraynor
158
25k
Site-Speed That Sticks
csswizardry
10
690
Transcript
機械翻訳 自然言語処理研究室 B3 須戸悠太 1
機械翻訳とは • コンピュータで、ある言語の文を他の言語の文 に翻訳する技術。 • 入力となる言語→源言語 • 出力となる言語→目標言語 2
機械翻訳とは • 身近な機械翻訳 ▫ Google 翻訳 ▫ エキサイト 翻訳 ▫
Yahoo!翻訳 などの翻訳サイト 3
機械翻訳方式 4 目的言語の 構文構造 源言語の 構文構造 目的言語の テキスト 源言語の テキスト
目的言語の 意味構造 源言語の 意味構造 中間言語 意味的トランスファ方式 構文的トランスファ方式 単語直接方式
単語直接方式 • 源言語の文を形態素解析、対訳辞書などを用い て単語列を目標言語の単語列に変換する。 • 文法が類似する言語間では有効。 • 例 ▫ 英)
President Lincoln was a good lawyer. ▫ 仏) Président Lincoln était un bon avocat. (リンカーン大統領は良い弁護士でした。) 5
トランスファ方式 ステップ1:解析 • 源言語の文に対し形態素、構文/意味解析を行う ステップ2:変換 • 得られた構文/意味構造を目標言語の構文/意味 構造に変換 ステップ3:生成 •
目標言語の構文/意味構造から文を生成する。 6
トランスファ方式 ステップ2-a:語彙的トランスファ • 対訳辞書を用いて、言語間の各単語について適 切な単語を選択する。 ステップ2-b:構造的トランスファ • 変換規則により構造の変換を行う。 7
トランスファ方式 例:”I take a picture.”→「私は写真を撮る」 • 文構造(この変換規則を用意) ▫ 英語 :主語+動詞+目的語
▫ 日本語:主語+目的語+動詞 • 対訳辞書を通して日本語に変換 • 訳語選択は選択制限や、周辺の単語との共起な どの情報を用いて行う。 8
トランスファ方式 利点 • 源言語と目標言語の間の構文/意味構造上の相違 など扱える。 欠点 • 言語のペアごとに変換規則が必要 ▫ 例:nカ国語に相互に翻訳を行うとn(n-1)個のシス
テムが必要 9
中間言語方式 • トランスファ方式よりも深い意味解析を行い、 特定の言語に依存しない表現(中間言語)を得 ることで目的の文を生成する方式。 • 各言語についての解析・生成モジュールの開発 をすれば良い。 • 中間言語=人工言語であり、設計が困難。
10
用例に基づく機械翻訳(EBMT) • 源言語と目標言語の文がペアになった用例を大 量にデータとして蓄積。 • 用例の中で入力文と源言語の文が最も類似する 用例を選び、それを元に翻訳を行う。 11
用例に基づく機械翻訳(EBMT) • 用例のデータの例 He takes a photo. →彼は写真を撮る。 Ann took
an apple. →アンはりんごを食べた。 Tom took a bus. →トムはバスに乗った。 例:”I take a picture.”→1番目の用例と最も類似 • 対応する目標言語の文を基に翻訳する。 12