Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150120 発表資料
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yuta
January 21, 2015
Education
0
170
20150120 発表資料
Yuta
January 21, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
180
NLP2016 報告
sudo
0
200
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
270
20150909 発表資料
sudo
0
150
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
200
20150512 文献紹介
sudo
0
190
Other Decks in Education
See All in Education
栃木にいても「だいじ」だっぺ〜! 栃木&全国アジャイルコミュニティへの参加・運営の魅力
sasakendayo
1
140
悩める リーダー達に 届けたい書籍|レジリエントマネジメント 書籍イントロダクション-260126
mimoza60
0
290
Microsoft Office 365
matleenalaakso
0
2.1k
1216
cbtlibrary
0
140
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
730
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
【ベテランCTOからのメッセージ】AIとか組織とかキャリアとか気になることはあるけどさ、個人の技術力から目を背けないでやっていきましょうよ
netmarkjp
2
2.8k
2025年度伊藤正彦ゼミ紹介
imash
0
170
HTML5 and the Open Web Platform - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
HyRead2526
cbtlibrary
0
200
TinyGoをWebブラウザで動かすための方法+アルファ_20260201
masakiokuda
2
220
Node-REDで広がるプログラミング教育の可能性
ueponx
1
270
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
463
34k
How to make the Groovebox
asonas
2
1.9k
Ruling the World: When Life Gets Gamed
codingconduct
0
140
A Soul's Torment
seathinner
5
2.3k
Test your architecture with Archunit
thirion
1
2.2k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
Writing Fast Ruby
sferik
630
62k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
How to build a perfect <img>
jonoalderson
1
4.9k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
機械翻訳 自然言語処理研究室 B3 須戸悠太 1
機械翻訳とは • コンピュータで、ある言語の文を他の言語の文 に翻訳する技術。 • 入力となる言語→源言語 • 出力となる言語→目標言語 2
機械翻訳とは • 身近な機械翻訳 ▫ Google 翻訳 ▫ エキサイト 翻訳 ▫
Yahoo!翻訳 などの翻訳サイト 3
機械翻訳方式 4 目的言語の 構文構造 源言語の 構文構造 目的言語の テキスト 源言語の テキスト
目的言語の 意味構造 源言語の 意味構造 中間言語 意味的トランスファ方式 構文的トランスファ方式 単語直接方式
単語直接方式 • 源言語の文を形態素解析、対訳辞書などを用い て単語列を目標言語の単語列に変換する。 • 文法が類似する言語間では有効。 • 例 ▫ 英)
President Lincoln was a good lawyer. ▫ 仏) Président Lincoln était un bon avocat. (リンカーン大統領は良い弁護士でした。) 5
トランスファ方式 ステップ1:解析 • 源言語の文に対し形態素、構文/意味解析を行う ステップ2:変換 • 得られた構文/意味構造を目標言語の構文/意味 構造に変換 ステップ3:生成 •
目標言語の構文/意味構造から文を生成する。 6
トランスファ方式 ステップ2-a:語彙的トランスファ • 対訳辞書を用いて、言語間の各単語について適 切な単語を選択する。 ステップ2-b:構造的トランスファ • 変換規則により構造の変換を行う。 7
トランスファ方式 例:”I take a picture.”→「私は写真を撮る」 • 文構造(この変換規則を用意) ▫ 英語 :主語+動詞+目的語
▫ 日本語:主語+目的語+動詞 • 対訳辞書を通して日本語に変換 • 訳語選択は選択制限や、周辺の単語との共起な どの情報を用いて行う。 8
トランスファ方式 利点 • 源言語と目標言語の間の構文/意味構造上の相違 など扱える。 欠点 • 言語のペアごとに変換規則が必要 ▫ 例:nカ国語に相互に翻訳を行うとn(n-1)個のシス
テムが必要 9
中間言語方式 • トランスファ方式よりも深い意味解析を行い、 特定の言語に依存しない表現(中間言語)を得 ることで目的の文を生成する方式。 • 各言語についての解析・生成モジュールの開発 をすれば良い。 • 中間言語=人工言語であり、設計が困難。
10
用例に基づく機械翻訳(EBMT) • 源言語と目標言語の文がペアになった用例を大 量にデータとして蓄積。 • 用例の中で入力文と源言語の文が最も類似する 用例を選び、それを元に翻訳を行う。 11
用例に基づく機械翻訳(EBMT) • 用例のデータの例 He takes a photo. →彼は写真を撮る。 Ann took
an apple. →アンはりんごを食べた。 Tom took a bus. →トムはバスに乗った。 例:”I take a picture.”→1番目の用例と最も類似 • 対応する目標言語の文を基に翻訳する。 12