Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20150216 発表資料
Search
Yuta
February 16, 2015
Education
0
150
20150216 発表資料
Yuta
February 16, 2015
Tweet
Share
More Decks by Yuta
See All by Yuta
20160422 文献紹介
sudo
0
180
NLP2016 報告
sudo
0
200
NLP2016 発表スライド
sudo
0
220
20160218 文献紹介
sudo
0
270
20150909 発表資料
sudo
0
150
20150820 文献紹介
sudo
0
190
20150708 文献紹介
sudo
0
160
20150610 文献紹介
sudo
0
200
20150512 文献紹介
sudo
0
190
Other Decks in Education
See All in Education
AIで日本はどう進化する? 〜キミが生きる2035年の地図〜
behomazn
0
120
HyRead2526
cbtlibrary
0
200
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
110
LotusScript でエージェント情報を出力してみた
harunakano
0
120
焦りと不安を、技術力に変える方法 - 新卒iOSエンジニアの失敗談と成長のフレームワーク
hypebeans
1
650
TinyGoをWebブラウザで動かすための方法+アルファ_20260201
masakiokuda
2
220
1021
cbtlibrary
0
400
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
1202
cbtlibrary
0
210
TypeScript初心者向け完全ガイド
mickey_kubo
1
120
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
170
AWS re_Invent に全力で参加したくて筋トレを頑張っている話
amarelo_n24
2
120
Featured
See All Featured
The untapped power of vector embeddings
frankvandijk
1
1.6k
New Earth Scene 8
popppiees
1
1.5k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
What's in a price? How to price your products and services
michaelherold
247
13k
Embracing the Ebb and Flow
colly
88
5k
For a Future-Friendly Web
brad_frost
182
10k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Building Applications with DynamoDB
mza
96
6.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Transcript
情報抽出 自然言語処理研究室 B3 須戸悠太 1
情報抽出とは • あらかじめ指定されたテンプレートを埋める形 で、テキストから指定された情報を抽出する。 • 「あるテキスト」 ▫ →「出来事」「日付」「場所」などを抽出 2
例:自然災害 • テキスト ▫ フィリピン政府によると、台風6号の影響で2008 年6月21日、同国中部と南部の各地で河川の氾濫 や地滑りが発生、少なくとも17人が死亡、数人が 行方不明となった。数万人が一時、避難した。 3
例:自然災害 • テンプレート 4 スロット 情報 出来事 台風6号 日付 2008年6月21日
場所 フィリピン中部と南部の各地 損害 河川の氾濫、地滑り 死者数 少なくとも17人 行方不明者数 数人
テンプレートから • 対象とするテキストのトピックにおいて重要か つ不可欠な内容であるということを表現。 • テキストの内容によってテンプレートのスロッ トは変化。 ▫ 例:「企業の新製品情報」 ▫
→「企業名」「商品名」「価格」「スペック」 「発売日」など 5
要素技術の分割 • 1. 固有名抽出 • 2. 属性抽出 • 3. 関係抽出
• 4. シナリオの認識 6
処理の流れ 7 テ キ ス ト 形 態 素 解
析 固 有 名 抽 出 構 文 解 析 属 性 ・ 関 係 抽 出 シ ナ リ オ の 認 識 照 応 解 析 推 論 抽 出 さ れ た テ ン プ レ ー ト
各種解析法では • 形態素解析 ▫ 単語への分割、品詞の付与 • 構文解析 ▫ 名詞句、動詞句などの句の抽出 •
照応解析 ▫ 代名詞の対象や省略要素の同定 8
固有名抽出 種類 例 人名 イチロー、徳川家康、… 地名 渋谷、大阪府、… 組織名 東京工業大学、東芝、… 人工物名
iPhone、PSP、… 時間表現 午前9時、正午、… 単位表現 kg、cm、… 9
固有名抽出の手法 • 知識ベースの手法 ▫ パターンを人手で記述 ▫ 構築のコストの大きさが問題 • 統計的な手法 ▫
訓練データを、機械学習アルゴリズムに与えるこ とで、抽出規則を自動的に学習する。 10
属性・関係抽出 • 属性抽出:固有名のもつ属性を抽出 ▫ 例:人名→性別、年齢など • 関係抽出:固有名間の関係の同定 ▫ 例:人名と組織名→従業員 11
シナリオの認識 • テキスト中に記述されたイベントをパターンに より抽出。 • パターンはあらかじめ用意しておき、テキスト と照合することで該当箇所を抽出。 12
余談 • Webページを対象とした情報抽出器 ▫ →ラッパと呼び、ビジネスなどに用いられる。 • 応用例 ▫ Twitterへの投稿から抽出 ▫
→ある商品に対する消費者の反応など 13