Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20140407_kddi_growth_hack_pub.pdf
Search
wadap
April 11, 2014
Technology
4
4.5k
20140407_kddi_growth_hack_pub.pdf
wadap
April 11, 2014
Tweet
Share
More Decks by wadap
See All by wadap
20200311_コネヒト_リモートワークを支える文化
wadap
2
2.7k
副業が難しいと思う理由
wadap
3
660
2016-11-10_chuo_university
wadap
2
3.9k
how_to_survive.pdf
wadap
0
110
how_to_choose_technology
wadap
7
4.3k
nanapiの会社風土と文化づくり
wadap
2
23k
20140826_nanapi_engineer_culture_pub.pdf
wadap
2
150
nanapiの開発現場をどのようにして回しているか
wadap
40
11k
nanapi TechBlog
wadap
1
7k
Other Decks in Technology
See All in Technology
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.2k
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
360
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
210
Tebiki Engineering Team Deck
tebiki
0
24k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.8k
Cosmos World Foundation Model Platform for Physical AI
takmin
0
760
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
Designing for Timeless Needs
cassininazir
0
130
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Context Engineering - Making Every Token Count
addyosmani
9
650
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
Growth Hacking for nanapi Co-Founder CTO Shuichi Wada / @wadap
Agenda *OUSPEVDUJPO 8IBUJT(SPXUI)BDL )PXUP"OBMZ[F%BUB
Agenda *OUSPEVDUJPO 8IBUJT(SPXUI)BDL )PXUP"OBMZ[F%BUB
Introduction • 和田修一 / @wadap • 1981年生まれ • 株式会社nanapi Co-Founder(共同創業者)
取締役 執行役員 CTO • サーバインフラ〜サーバサイド開発が得意分野 • 現在でもインフラ周りのメインエンジニア
Biography • 2005年 新卒にて楽天株式会社へ入社 サーバ・インフラ系の部署に配属される • 2009年 楽天を退職し、弊社代表の古川と起業 株式会社ロケットスタート CTOに就任
• 2011年 社名を株式会社nanapiへ変更 株式会社nanapi 取締役 執行役員 CTOに就任
Personal Work 6/*9తͳΞϨ IUUQXBEBQIBUFOBCMPHDPN 6OJYͷೖߨ࠲ IUUQTDIPPKQDMBTT
0VS4FSWJDFT w ੜ׆ͷܙ͕ू·ΔαΠτ IUUQOBOBQJKQ w ༷ʑͳϋπʔΛఏڙ͢Δα Πτͱͯ͠ϦϦʔε w ݄̍̕ϦϦʔε w
݄ؒສ66 ݄ؒສ7JTJUPS
• 即レスQAアプリアンサー 「アンサー」で検索! • 質問してから数分以内に回答 がくるのが特徴 • 2013年12月リリース LineQとリリース被った! 0VS4FSWJDFT
• 英語圏の人に向けた新サービ スをリリース • 4/1にリリース済み ※国内へは未告知 • 英語圏を中心に展開をしてい く予定 0VS4FSWJDFT
Agenda *OUSPEVDUJPO 8IBUJT(SPXUI)BDL )PXUP"OBMZ[F%BUB
What’s GrowthHack? • バズワードに騙されないように! • 数値を正しく因数分解し、実行し、その結果を分析 して成果を出すこと • 要するに、正しくPDCAサイクルを回すこと
GrowthHacking for nanapi ϢχʔΫϢʔβʔ ݄ͷ๚ ̍ճ͋ͨΓͷӾཡ17 Y Y ສ ճ
ճ 4&0هࣄ૿Ճ Ϧϐʔτࢪࡦ ճ༡ࢪࡦ
どのようにして それぞれの数値を伸ばせば良いのか?
- William Edwards Deming - ”神ならば信じよう。 神でない人はデータを持ってきなさい。”
• どのようにデータ解析が世間 的に活用されているのかを多 く紹介されている • Web業界というよりも、医療 系など様々な話が多く興味深 い • データ分析の重要性を理解す
るための入門書5冊 http://goo.gl/RAOoSx Data Analysis
Data Driven • 回遊施策やSEOなど、最終的に雰囲気で実施されて しまうことが多い • 大事なのは、実行されたあとにその結果がどのよう な数値を招いたのかを検証すること • そのためにビッグデータを解析する
Agenda *OUSPEVDUJPO 8IBUJT(SPXUI)BDL )PXUP"OBMZ[F%BUB
• GoogleAnalyticsにおけるア クセス解析 • TreasureDataにおけるデータ マイニング Analyze Tools
Problems of Google Analytics • 1000万PV/monthを超えると、細かい解析結果が サンプル値となってしまう • サービスのデータに依存した複雑な解析が難しい
• クラウド上に構築されている データ解析プラットフォーム • ログを直接送ることで、あと からSQLでデータ解析を行う ことができる TreasureData
3FRVFTU )551 WJB+BWBTDSJQU 'MVFOUE 'PSXBSE Overview
Log Format • データ解析を行う際に大事なのは、解析対象となる ログのデータ設計 • 取得するログは “非正規化” することが大事 •
RDBMS感覚で正規化を行いすぎるととにかく解析 しづらいデータになる
• TreasureData上のデータは、 SQLで抽出できる • Hiveをベースに実装されてい るので、基本的なMySQLの知 識だけで抽出可能 • この画面を非エンジニアにも 提供し、データ解析を実施
How to analyze Data
Analysis Example ͱ͋ΔվमΛߦͬͨͱ͜Ζएׯ17͕ݮগͨ͠ɻ ۩ମతʹͳͥ17͕ݮগͨ͠ͷ͔ʁ ϥΠτϢʔβʔճ༡͕ݮগ ϔϏʔϢʔβʔճ༡ɾ๚ڞʹ͕ݮগ
ϔϏʔϢʔβʔͷճ༡͕ݮͬͨͷ Ͳͷίϯςϯπʹ͓͍͔ͯʁ ࿀Ѫίϯςϯπʹ͓͍ͯճ༡མ͍ͪͯͳ͍͕ɺ ͦͷଞͷίϯςϯπʹ͓͍ͯݮ͍ͬͯΔ Analysis Example
• クエリの実行パターンはある 程度限られるのでドキュメン ト化 • データ解析をエンジニアのも のだけにしないことが大事 • SQLは非エンジニアでも触れ るくらいの心意気を育てる
All employees use
Growth Hack • GrowchHackとはイコール企業文化につながる • データ解析による判断が正義になるか • 本当の意味でユーザーを大切にしているか
None