Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSにテストデータをかっこよく投入したいのでAWS SDK for pandasと向き合うこ...
Search
watany
October 08, 2022
Technology
0
2.1k
AWSにテストデータをかっこよく投入したいのでAWS SDK for pandasと向き合うことにした
JAWS DAYS 2022 - Satellitesでお話しした内容(その2)です。
watany
October 08, 2022
Tweet
Share
More Decks by watany
See All by watany
宇宙最速のランチRecap LT会(AWS re:Invent 2024)
watany
2
580
苦いビールを避ける冴えたやり方
watany
2
170
こんなにあるの? 最近のIPAトレンドを ざっくりまとめてみた
watany
3
650
消費者庁のページから学ぶ アウトプットでの比較で荒れない方法
watany
0
120
Deep Dive into Lambda Response Streaming
watany
1
86
”AWS CDKを選定しなかった理由”から見るCDKの現在地
watany
4
2.6k
新常識! Javascript×AWS Lambdaがアツい!!
watany
3
420
Adaptor, Helmet, SSG
watany
0
280
異次元のCloudFormation 拡張コマンド~Rain~
watany
0
420
Other Decks in Technology
See All in Technology
React Routerで実現する型安全なSPAルーティング
sansantech
PRO
4
880
.NET 最新アップデート ~ AI とクラウド時代のアプリモダナイゼーション
chack411
0
140
Azureの開発で辛いところ
re3turn
0
200
Alignment and Autonomy in Cybozu - 300人の開発組織でアラインメントと自律性を両立させるアジャイルな組織運営 / RSGT2025
ama_ch
1
1.7k
アジャイルチームが変化し続けるための組織文化とマネジメント・アプローチ / Agile management that enables ever-changing teams
kakehashi
2
2.4k
10年もののバグを退治した話
n_seki
0
140
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
6
54k
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.7k
Bring Your Own Container: When Containers Turn the Key to EDR Bypass/byoc-avtokyo2024
tkmru
0
330
rootful・rootless・privilegedコンテナの違い/rootful_rootless_privileged_container_difference
moz_sec_
0
110
【令和最新版】ロボットシミュレータ Genesis x ROS 2で始める快適AIロボット開発
hakuturu583
2
1.4k
NOT VALIDな検査制約 / check constraint that is not valid
yahonda
1
110
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
The Invisible Side of Design
smashingmag
299
50k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Mobile First: as difficult as doing things right
swwweet
222
9k
Building Your Own Lightsaber
phodgson
104
6.2k
Music & Morning Musume
bryan
46
6.3k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Code Reviewing Like a Champion
maltzj
521
39k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Transcript
JAWS DAYS 2022 - Satellites AWS にテストデータをかっこよく投入したいので AWS SDK for
pandas と 向き合うことにした 2022/10/08 渡邉 洋平 1
About me Watanabe Yohei (Twitter: _@watany) Company Name: NTT TechnoCross
Corporation Role: AWS Architect, Instructor, CCoE AWS, CDK 2022 APN ALL AWS Certifications Engineers AWS Community Builder(Cloud Operations) Contributer (AWS CDK) 2
目次 1. DynamoDB に Bulk Insert する 2. AWS SDK
for Pandas(DataWrangler) 3. 手元のデータに Athena でクエリをする 4. 使ったことない DB にデータを入れる 3
1. DynamoDB に Bulk Insert する 4
例: 100,000 Records in DynamoDB が欲しい! みつもり: 多分 2h くらい
実際に必要な時間は i. DB 構築: 0.25h ii. データ投入: 0.5h iii. 手順化: 0.25h iv. バッファ: 0.5h 5
何とかなりそう i. DB 構築 CDK でスッと作れる DB のスキーマは…主キーまでは定義できる iii. 手順化
また同じ作業やり直すかも。Markdown で残す 6
やばそう 2. データ投入 10 万行のテストデータを作る いい感じにコード書く?最悪 Excel とか DynamoDB に投入する
Python だと batch_writter だっけ・・・ データを API の I/F にはめ込むの地味に面倒・・・ やり慣れてると問題なさそうだが、全部久しぶりなんだよなあ でも大丈夫! 7
import import import import numpy numpy numpy numpy as as
as as np np np np import import import import pandas pandas pandas pandas as as as as pd pd pd pd import import import import awswrangler awswrangler awswrangler awswrangler as as as as wr wr wr wr recode_num recode_num recode_num recode_num = = = = 100000 table table table table = = = = "sample" columns columns columns columns= = = =["column1","column2","column3"] # create sample data df df df df = = = = pd pd pd pd.DataFrame DataFrame DataFrame DataFrame DataFrame(np np np np.random random random random random.randn randn randn randn randn(recode_num recode_num recode_num recode_num, len(columns columns columns columns)), columns columns columns columns= = = =columns columns columns columns) # write wr wr wr wr.dynamodb dynamodb dynamodb dynamodb dynamodb.put_df put_df put_df put_df put_df( df df df df= = = =df df df df.applymap applymap applymap applymap applymap(str), table_name table_name table_name table_name= = = =table table table table ) 8
これが俺の答えや! 無事に 2h でミッションクリア Q. いま何やったの? A. 何って…データを AWS にスッと投入できる
AWS SDK for pandas を使っただけだが……? ということで、 AWS SDK for pandas の話をします 9
2. AWS SDK for Pandas(Data Wrangler) 10
AWS SDK for pandas Easy integration with Athena, Glue, Redshift,
Timestream, OpenSearch, Neptune, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL). 要は Pandas の Dataframe 形式で、AWS リソースへデ ータを出し入れできる。 on several platforms (AWS Lambda, AWS Glue Python Shell, EMR, EC2, on-premises, Amazon SageMaker, local, etc). Python ベースでの基盤なら動かせるので、オンプレから 各種マネージドサービス上でも簡単動作 11
read_* to_* CSV XLS PARQUET HTML <> HDF5 JSON {}
GBQ SQL ... CSV XLS PARQUET HTML <> HDF5 JSON {} GBQ SQL ... What's pandas? 言わずと知れた Python のデータ分析ライブラリ。 n 次元配列計算ライブラリ numpy をベースに、数値以 外のデータも一通り抽象化 ビッグデータや ML 方面での ETL 処理が主。 テストデータの投入って Extract, Transform, Load ですよね(暴論) 12
前からご存じの方向け Q. 変な名前で呼んでるけど、それって DataWrangler だ よね? A. CFP 書いてた時(2020/8/XX)まではそう 参
考:https://twitter.com/AWSOpen/status/1564 613913416704012 ぶっちゃけ呼びずらいので、以降モジュール名でもある DataWrangler と呼びます 13
≠ SageMaker Data Wrangler Amazon SageMaker Data Wrangler :SageMaker Studio
で GUI ベースでデータの前処理をする easy にデータをクエリできるなど、共通点はあるが別物 名称被りが rename の一因? 14
大量データをリソースに入れるのしんどい AWS リソース構築の情報は充実している CDK、Terraform、other IaC... SDK の help を横目に JSON
職人 Excel→CSV→ some logic →AWS API だったのが、 DataWrangler で解決 15
3. 手元のデータを Athena で Query する 16
やりたいこと S3 にファイルを置いて Athena でクエリしたい CSV→Parquet 変換も 再現性のある作り方は面倒 Glue、Athena は
CDK L2 未対応。CFn で書くの複雑で は!? コンソールで頑張ると、手順書の陳腐化リスク…… こんな時こそ簡単 かつ コードで残せる "SDK for pandas(DataWrangler)" 17
import import import import awswrangler awswrangler awswrangler awswrangler as as
as as wr wr wr wr import import import import pandas pandas pandas pandas as as as as pd pd pd pd from from from from sklearn sklearn sklearn sklearn.datasets datasets datasets datasets datasets import import import import load_iris load_iris load_iris load_iris db_name db_name db_name db_name = = = = "aws_sdk_pandas" catalog_db catalog_db catalog_db catalog_db = = = = wr wr wr wr.catalog catalog catalog catalog catalog.databases databases databases databases databases() if if if if not not not not db_name db_name db_name db_name in in in in catalog_db catalog_db catalog_db catalog_db.values values values values values: wr wr wr wr.catalog catalog catalog catalog catalog.create_database create_database create_database create_database create_database(db_name db_name db_name db_name) Athena & S3 (1/3) モジュール読み込み awswrangler, pandas: 今回紹介 scikit-learn の datasets: サンプル Glue の DB 作成 wr.catalog.database s() で 存在をチェック 18
iris iris iris iris = = = = load_iris load_iris
load_iris load_iris() df df df df = = = = pd pd pd pd.DataFrame DataFrame DataFrame DataFrame DataFrame(data data data data= = = =iris iris iris iris.data data data data data, columns columns columns columns= = = =iris iris iris iris.feature_names feature_names feature_names feature_names feature_names) wr wr wr wr.s3 s3 s3 s3 s3.to_parquet to_parquet to_parquet to_parquet to_parquet( df df df df= = = =df df df df, path path path path= = = =f"s3://{bucket bucket bucket bucket}/dataset/", dataset dataset dataset dataset= = = =True True True True, mode mode mode mode= = = ="overwrite", database database database database= = = =db_name db_name db_name db_name, table table table table= = = ="my_table" ) Athena & S3 (2/3) テストデータ(iris)を Dataframe 形式に変換 parquet 形式のオブジェクトに 変換し S3 へ書き込む dataset=True で、 Glue/Athena 対応オプ ションを扱える e.g. database , table 19
query query query query = = = = "SELECT *
FROM my_table where sepal_length_cm_ > 5.2", result result result result = = = = wr wr wr wr.athena athena athena athena athena.read_sql_query read_sql_query read_sql_query read_sql_query read_sql_query( database database database database= = = =db_name db_name db_name db_name ) print(result result result result) Athena & S3 (3/3) 参照クエリをスッと投げ、結果 を表示 今回も無事にミッションクリア 20
ちなみに 通常の SDK(boto3)で必要だった処理 dataset to parquet Glue Setting(DB & TABLE)
実際はもうちょい面倒 Athena Query クエリは非同期実行。結果の表示は waiter と取得処理が必要 「実際に書くと面倒な BoilerPlate」からの解放 21
4. 未知の DB と立ち向かう 22
Q1. この DB を知っていますか? Amazon Timestream サーバレスな時系列データベースサービス 皆さんはご存じですか? 使っている 使ったことない
名前だけ知ってる Q2. 実際に使ったことはありますか? 少なくとも私はない GA は 2020/10 だが、日本(ap-northeast-1)では 2022.7 使いたいユースケースにまだ出会えていない 23
ない話 AWS 使ったことあるんだよね? は、はい TimeStream ってやつ、よくわかんなくて。 AWS 得意なんだよね?テストデータ 10 万
件入れといてくれない? ?????????? 24
25
26
今のチュートリアルやんけ! ごめんなさい 大量データ投入シナリオを Try スキーマの考え方が違っててうまくいかなんだ さすがの DataWrangler でもガチ素人を助けてくれるわけではない ここから学べる事 投入先のデータ型、スキーマを理解して頭でイメージできる程度のスキルは必要(それはそう)
丸投げはやめよう!ちゃんと断ろう! 27
Appendix. 他にも便利そうな機能 ctas_approrch=True Athena でいい感じに CTAS(クエリ結果からのテーブルの作成)してくれるオプション concurrent_partitioning=True S3 へのパーティション書き込みを並列処理で実行 28
まとめ AWS SDK for pandas(DataWrangler)はデータ投入の強い味方 リソース作成の抽象化は CDK、投入の抽象化は DataWrangler 書き捨てのコード、テストツールなどを実装する手段として非常に有用。 とはいえ流石にサービスの理解までは助けてくれないので注意
29