Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
Search
Yuiga Wada (和田唯我)
November 29, 2022
Technology
0
60
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
https://yuiga.dev/blog/posts/gibbs_mulnorm/
Yuiga Wada (和田唯我)
November 29, 2022
Tweet
Share
More Decks by Yuiga Wada (和田唯我)
See All by Yuiga Wada (和田唯我)
機械学習基礎 TAレクチャー回「学部二年生はどう生きるべきか」
yuigawada
1
95
【AIC】Image Captioningにおける自動評価の最前線
yuigawada
0
25
未踏ブースト会議資料
yuigawada
0
160
論文速読24
yuigawada
0
79
【授業スライド】Well-beingとカルトの関係
yuigawada
0
310
論文速読23
yuigawada
0
160
自己紹介スライド
yuigawada
0
840
【ミニハッカソン】 arXiv Slider
yuigawada
0
340
【授業スライド】Sugar Visualizer
yuigawada
0
450
Other Decks in Technology
See All in Technology
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
700
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.3k
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
2.9k
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Challenging Hardware Contests with Zephyr and Lessons Learned
iotengineer22
0
180
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
200
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
550
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
340
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.4k
エンジニアリングをやめたくないので問い続ける
estie
2
1.1k
regrowth_tokyo_2025_securityagent
hiashisan
0
220
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Visualization
eitanlees
150
16k
Bash Introduction
62gerente
615
210k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Why Our Code Smells
bkeepers
PRO
340
57k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
GitHub's CSS Performance
jonrohan
1032
470k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Embracing the Ebb and Flow
colly
88
4.9k
Transcript
情報⼯学機械学習 §9.3.4 B3 和⽥唯我 2022/3/1
⽬次 2 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
⽬次 3 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
a. 特徴と⽬標の整理 4 • Gibbs Sampling の特徴 • ⼀次元だけサンプルを更新するので, 条件付き確率の計算が必要
→ ⼀般に条件付き確率の計算は困難 • ⽬標 • 多次元正規分布における条件付き確率を計算し, Gibbs Samplingに具体的なア ルゴリズムの⼀例を与える.
a. 設定の整理 5 • ベクトル 𝒛 • ⼀次元だけサンプルを更新 • →
第⼀番⽬の変数 𝑥 とベクトル 𝒚 で構成されているとする • 平均・共分散⾏列・精度⾏列 • 以下のようにブロック⾏列で記述
a. 過程の整理 6 • アルゴリズム導出の流れ 1. 提案分布を正規分布 𝒩 µ, Σ
とし, ⼀次元のみに着⽬ (→ 𝑥 ). 2. 𝑝 𝒛 𝝁, Σ (=: 𝑝 𝒚, 𝑥 )から 𝑝 𝑥 | 𝒚 を計算し, パラメタ µ!|# , σ!|# $ を計算. 3. 𝑝 𝑥 | 𝒚 と 𝑝 𝑧% | 𝑧& '(& 𝑧$ '(& , … , 𝑧%)& '(& , 𝑧%(& ' , … , 𝑧* (') との対応を与える.
a. 式の整理 7 • 𝒛 ~ 𝒩 µ, Σ のとき
𝑝 𝒛 𝝁, Σ は以下の通り • 共分散⾏列 Σを精度⾏列 Λ で書き換えると
a. パラメタ µ!|# , σ!|# $ の計算 8 • パラメタ
の計算 • σ!|# $ → 𝑥 に関する2次の項と対応 • µ!|# → 𝑥 に関する1次の項と対応 • ⇒ 𝑝(𝒚) は 𝑥 に関与しないので 𝑝 𝒛 𝝁, Σ を 𝑥 について係数⽐較 疑問: 𝑥 と 𝒚 って相関ゼロ?
a. パラメタ µ!|# , σ!|# $ の計算 9 • 𝑝
𝒛 𝝁, Σ の 𝑒𝑥𝑝 内を 𝑥 について展開すると
a. パラメタ σ!|# $ の計算 10 • 2次の項について 𝑝 𝒛
𝝁, Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# の計算 11 • 1次の項について 𝑝 𝒛 𝝁,
Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# , σ!|# $ の計算 12 • 求めた各パラメタは,
精度⾏列に依存している • → 精度⾏列を共分散⾏列で書き下す必要がある • ブロック⾏列の逆⾏列が問題となる • → ブロック⾏列の逆⾏列を求めよう
⽬次 13 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
b. ブロック⾏列の逆⾏列 – LDU分解 14 • ブロック⾏列Pをブロック⾏列 X, Y, Z,
Wを⽤いてLDU分解する • 逆⾏列といえばLU分解じゃない? • なんでここではLDU? • ブロック⾏列なのでUの対⾓⽅向のブロックを I にしたほうが楽 (個⼈的な感想) L (下三⾓) D (対⾓) U (上三⾓)
b. ブロック⾏列の逆⾏列 – LDU分解 15 • Pの各ブロックと⽐較すれば, 以下のようにLDU分解が構成できる
b. ブロック⾏列の逆⾏列 – LDU分解 16 • 逆⾏列を求めるには, ブロック⾏列L,D,Uの逆⾏列が求まれば良い.
b. ブロック⾏列の逆⾏列 – LDU分解 17 • ブロック⾏列L,D,Uの逆⾏列 • 同じ形のブロック⾏列で, 4つのブロックを適当な⽂字に置けば求まる
b. ブロック⾏列の逆⾏列 – LDU分解 18 • ブロック⾏列L,D,Uの逆⾏列が求まったので, 所望の逆⾏列は • 各ブロックについて
• Woodburyの公式が簡略化に有効
b. ブロック⾏列の逆⾏列 – Woodburyの公式 19 • Woodburyの公式 ブロック⾏列の逆⾏列 𝐷 ←
−𝐷−1, 𝑇 ≔ 𝐴 − 𝐵𝐷−1𝐶 と置けば式が綺麗に
b. ブロック⾏列の逆⾏列 20 • よって, ブロック⾏列の逆⾏列は以下の式で与えられる ただし, 𝑇 = 𝐴
− 𝐵𝐷−1𝐶
b. ブロック⾏列の逆⾏列 – 結果 21 • 本題に戻ると… • 以上の議論より, 平均・分散に⽤いる精度⾏列のブロックは
⽬次 22 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
c. Demo: Gibbs Samplingの実装 23
c. Demo: Gibbs Samplingの実装 24 コードはgistに上げたので遊んでみてね ⇒ https://gist.github.com/YuigaWada/4929fc479027af6f05ef4950a093ba33