$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
Search
Yuiga Wada (和田唯我)
November 29, 2022
Technology
0
59
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
https://yuiga.dev/blog/posts/gibbs_mulnorm/
Yuiga Wada (和田唯我)
November 29, 2022
Tweet
Share
More Decks by Yuiga Wada (和田唯我)
See All by Yuiga Wada (和田唯我)
機械学習基礎 TAレクチャー回「学部二年生はどう生きるべきか」
yuigawada
1
91
【AIC】Image Captioningにおける自動評価の最前線
yuigawada
0
24
未踏ブースト会議資料
yuigawada
0
160
論文速読24
yuigawada
0
78
【授業スライド】Well-beingとカルトの関係
yuigawada
0
300
論文速読23
yuigawada
0
160
自己紹介スライド
yuigawada
0
800
【ミニハッカソン】 arXiv Slider
yuigawada
0
340
【授業スライド】Sugar Visualizer
yuigawada
0
440
Other Decks in Technology
See All in Technology
一億総業務改善を支える社内AIエージェント基盤の要諦
yukukotani
8
2.4k
Eight Engineering Unit 紹介資料
sansan33
PRO
0
5.7k
Master Dataグループ紹介資料
sansan33
PRO
1
4k
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
8
1.8k
原理から解き明かす AIと人間の成長 - Progate BAR
teba_eleven
2
280
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
21k
Design System Documentation Tooling 2025
takanorip
1
850
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
15k
Excelデータ分析で学ぶディメンショナルモデリング ~アジャイルデータモデリングへ向けて~ by @Kazaneya_PR / 20251126
kazaneya
PRO
3
790
Google Stitch 大型アップデートが実現するアイデアとコードの完全なる融合
nekoailab
0
100
MAP-7thplaceSolution
yukichi0403
2
230
adk-samples に学ぶデータ分析 LLM エージェント開発
na0
3
1.2k
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Producing Creativity
orderedlist
PRO
348
40k
Designing for humans not robots
tammielis
254
26k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
How to train your dragon (web standard)
notwaldorf
97
6.4k
How STYLIGHT went responsive
nonsquared
100
5.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
960
Measuring & Analyzing Core Web Vitals
bluesmoon
9
690
Transcript
情報⼯学機械学習 §9.3.4 B3 和⽥唯我 2022/3/1
⽬次 2 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
⽬次 3 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
a. 特徴と⽬標の整理 4 • Gibbs Sampling の特徴 • ⼀次元だけサンプルを更新するので, 条件付き確率の計算が必要
→ ⼀般に条件付き確率の計算は困難 • ⽬標 • 多次元正規分布における条件付き確率を計算し, Gibbs Samplingに具体的なア ルゴリズムの⼀例を与える.
a. 設定の整理 5 • ベクトル 𝒛 • ⼀次元だけサンプルを更新 • →
第⼀番⽬の変数 𝑥 とベクトル 𝒚 で構成されているとする • 平均・共分散⾏列・精度⾏列 • 以下のようにブロック⾏列で記述
a. 過程の整理 6 • アルゴリズム導出の流れ 1. 提案分布を正規分布 𝒩 µ, Σ
とし, ⼀次元のみに着⽬ (→ 𝑥 ). 2. 𝑝 𝒛 𝝁, Σ (=: 𝑝 𝒚, 𝑥 )から 𝑝 𝑥 | 𝒚 を計算し, パラメタ µ!|# , σ!|# $ を計算. 3. 𝑝 𝑥 | 𝒚 と 𝑝 𝑧% | 𝑧& '(& 𝑧$ '(& , … , 𝑧%)& '(& , 𝑧%(& ' , … , 𝑧* (') との対応を与える.
a. 式の整理 7 • 𝒛 ~ 𝒩 µ, Σ のとき
𝑝 𝒛 𝝁, Σ は以下の通り • 共分散⾏列 Σを精度⾏列 Λ で書き換えると
a. パラメタ µ!|# , σ!|# $ の計算 8 • パラメタ
の計算 • σ!|# $ → 𝑥 に関する2次の項と対応 • µ!|# → 𝑥 に関する1次の項と対応 • ⇒ 𝑝(𝒚) は 𝑥 に関与しないので 𝑝 𝒛 𝝁, Σ を 𝑥 について係数⽐較 疑問: 𝑥 と 𝒚 って相関ゼロ?
a. パラメタ µ!|# , σ!|# $ の計算 9 • 𝑝
𝒛 𝝁, Σ の 𝑒𝑥𝑝 内を 𝑥 について展開すると
a. パラメタ σ!|# $ の計算 10 • 2次の項について 𝑝 𝒛
𝝁, Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# の計算 11 • 1次の項について 𝑝 𝒛 𝝁,
Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# , σ!|# $ の計算 12 • 求めた各パラメタは,
精度⾏列に依存している • → 精度⾏列を共分散⾏列で書き下す必要がある • ブロック⾏列の逆⾏列が問題となる • → ブロック⾏列の逆⾏列を求めよう
⽬次 13 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
b. ブロック⾏列の逆⾏列 – LDU分解 14 • ブロック⾏列Pをブロック⾏列 X, Y, Z,
Wを⽤いてLDU分解する • 逆⾏列といえばLU分解じゃない? • なんでここではLDU? • ブロック⾏列なのでUの対⾓⽅向のブロックを I にしたほうが楽 (個⼈的な感想) L (下三⾓) D (対⾓) U (上三⾓)
b. ブロック⾏列の逆⾏列 – LDU分解 15 • Pの各ブロックと⽐較すれば, 以下のようにLDU分解が構成できる
b. ブロック⾏列の逆⾏列 – LDU分解 16 • 逆⾏列を求めるには, ブロック⾏列L,D,Uの逆⾏列が求まれば良い.
b. ブロック⾏列の逆⾏列 – LDU分解 17 • ブロック⾏列L,D,Uの逆⾏列 • 同じ形のブロック⾏列で, 4つのブロックを適当な⽂字に置けば求まる
b. ブロック⾏列の逆⾏列 – LDU分解 18 • ブロック⾏列L,D,Uの逆⾏列が求まったので, 所望の逆⾏列は • 各ブロックについて
• Woodburyの公式が簡略化に有効
b. ブロック⾏列の逆⾏列 – Woodburyの公式 19 • Woodburyの公式 ブロック⾏列の逆⾏列 𝐷 ←
−𝐷−1, 𝑇 ≔ 𝐴 − 𝐵𝐷−1𝐶 と置けば式が綺麗に
b. ブロック⾏列の逆⾏列 20 • よって, ブロック⾏列の逆⾏列は以下の式で与えられる ただし, 𝑇 = 𝐴
− 𝐵𝐷−1𝐶
b. ブロック⾏列の逆⾏列 – 結果 21 • 本題に戻ると… • 以上の議論より, 平均・分散に⽤いる精度⾏列のブロックは
⽬次 22 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
c. Demo: Gibbs Samplingの実装 23
c. Demo: Gibbs Samplingの実装 24 コードはgistに上げたので遊んでみてね ⇒ https://gist.github.com/YuigaWada/4929fc479027af6f05ef4950a093ba33