Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
Search
Yuiga Wada (和田唯我)
November 29, 2022
Technology
0
36
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
https://yuiga.dev/blog/posts/gibbs_mulnorm/
Yuiga Wada (和田唯我)
November 29, 2022
Tweet
Share
More Decks by Yuiga Wada (和田唯我)
See All by Yuiga Wada (和田唯我)
機械学習基礎 TAレクチャー回「学部二年生はどう生きるべきか」
yuigawada
0
3
【AIC】Image Captioningにおける自動評価の最前線
yuigawada
0
5
未踏ブースト会議資料
yuigawada
0
33
論文速読24
yuigawada
0
23
【授業スライド】Well-beingとカルトの関係
yuigawada
0
210
論文速読23
yuigawada
0
130
自己紹介スライド
yuigawada
0
420
【ミニハッカソン】 arXiv Slider
yuigawada
0
290
【授業スライド】Sugar Visualizer
yuigawada
0
360
Other Decks in Technology
See All in Technology
10個のフィルタをAXI4-Streamでつなげてみた
marsee101
0
160
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
150
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
420
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
320
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
470
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
8
3.2k
AWS re:Invent 2024 ふりかえり
kongmingstrap
0
130
スタートアップで取り組んでいるAzureとMicrosoft 365のセキュリティ対策/How to Improve Azure and Microsoft 365 Security at Startup
yuj1osm
0
210
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
110
KubeCon NA 2024 Recap: How to Move from Ingress to Gateway API with Minimal Hassle
ysakotch
0
200
非機能品質を作り込むための実践アーキテクチャ
knih
2
630
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
33
1.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Building Applications with DynamoDB
mza
91
6.1k
Building Adaptive Systems
keathley
38
2.3k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
YesSQL, Process and Tooling at Scale
rocio
169
14k
A designer walks into a library…
pauljervisheath
204
24k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Gamification - CAS2011
davidbonilla
80
5.1k
Transcript
情報⼯学機械学習 §9.3.4 B3 和⽥唯我 2022/3/1
⽬次 2 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
⽬次 3 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
a. 特徴と⽬標の整理 4 • Gibbs Sampling の特徴 • ⼀次元だけサンプルを更新するので, 条件付き確率の計算が必要
→ ⼀般に条件付き確率の計算は困難 • ⽬標 • 多次元正規分布における条件付き確率を計算し, Gibbs Samplingに具体的なア ルゴリズムの⼀例を与える.
a. 設定の整理 5 • ベクトル 𝒛 • ⼀次元だけサンプルを更新 • →
第⼀番⽬の変数 𝑥 とベクトル 𝒚 で構成されているとする • 平均・共分散⾏列・精度⾏列 • 以下のようにブロック⾏列で記述
a. 過程の整理 6 • アルゴリズム導出の流れ 1. 提案分布を正規分布 𝒩 µ, Σ
とし, ⼀次元のみに着⽬ (→ 𝑥 ). 2. 𝑝 𝒛 𝝁, Σ (=: 𝑝 𝒚, 𝑥 )から 𝑝 𝑥 | 𝒚 を計算し, パラメタ µ!|# , σ!|# $ を計算. 3. 𝑝 𝑥 | 𝒚 と 𝑝 𝑧% | 𝑧& '(& 𝑧$ '(& , … , 𝑧%)& '(& , 𝑧%(& ' , … , 𝑧* (') との対応を与える.
a. 式の整理 7 • 𝒛 ~ 𝒩 µ, Σ のとき
𝑝 𝒛 𝝁, Σ は以下の通り • 共分散⾏列 Σを精度⾏列 Λ で書き換えると
a. パラメタ µ!|# , σ!|# $ の計算 8 • パラメタ
の計算 • σ!|# $ → 𝑥 に関する2次の項と対応 • µ!|# → 𝑥 に関する1次の項と対応 • ⇒ 𝑝(𝒚) は 𝑥 に関与しないので 𝑝 𝒛 𝝁, Σ を 𝑥 について係数⽐較 疑問: 𝑥 と 𝒚 って相関ゼロ?
a. パラメタ µ!|# , σ!|# $ の計算 9 • 𝑝
𝒛 𝝁, Σ の 𝑒𝑥𝑝 内を 𝑥 について展開すると
a. パラメタ σ!|# $ の計算 10 • 2次の項について 𝑝 𝒛
𝝁, Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# の計算 11 • 1次の項について 𝑝 𝒛 𝝁,
Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# , σ!|# $ の計算 12 • 求めた各パラメタは,
精度⾏列に依存している • → 精度⾏列を共分散⾏列で書き下す必要がある • ブロック⾏列の逆⾏列が問題となる • → ブロック⾏列の逆⾏列を求めよう
⽬次 13 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
b. ブロック⾏列の逆⾏列 – LDU分解 14 • ブロック⾏列Pをブロック⾏列 X, Y, Z,
Wを⽤いてLDU分解する • 逆⾏列といえばLU分解じゃない? • なんでここではLDU? • ブロック⾏列なのでUの対⾓⽅向のブロックを I にしたほうが楽 (個⼈的な感想) L (下三⾓) D (対⾓) U (上三⾓)
b. ブロック⾏列の逆⾏列 – LDU分解 15 • Pの各ブロックと⽐較すれば, 以下のようにLDU分解が構成できる
b. ブロック⾏列の逆⾏列 – LDU分解 16 • 逆⾏列を求めるには, ブロック⾏列L,D,Uの逆⾏列が求まれば良い.
b. ブロック⾏列の逆⾏列 – LDU分解 17 • ブロック⾏列L,D,Uの逆⾏列 • 同じ形のブロック⾏列で, 4つのブロックを適当な⽂字に置けば求まる
b. ブロック⾏列の逆⾏列 – LDU分解 18 • ブロック⾏列L,D,Uの逆⾏列が求まったので, 所望の逆⾏列は • 各ブロックについて
• Woodburyの公式が簡略化に有効
b. ブロック⾏列の逆⾏列 – Woodburyの公式 19 • Woodburyの公式 ブロック⾏列の逆⾏列 𝐷 ←
−𝐷−1, 𝑇 ≔ 𝐴 − 𝐵𝐷−1𝐶 と置けば式が綺麗に
b. ブロック⾏列の逆⾏列 20 • よって, ブロック⾏列の逆⾏列は以下の式で与えられる ただし, 𝑇 = 𝐴
− 𝐵𝐷−1𝐶
b. ブロック⾏列の逆⾏列 – 結果 21 • 本題に戻ると… • 以上の議論より, 平均・分散に⽤いる精度⾏列のブロックは
⽬次 22 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
c. Demo: Gibbs Samplingの実装 23
c. Demo: Gibbs Samplingの実装 24 コードはgistに上げたので遊んでみてね ⇒ https://gist.github.com/YuigaWada/4929fc479027af6f05ef4950a093ba33