Upgrade to Pro — share decks privately, control downloads, hide ads and more …

文献紹介: Confidence Modeling for Neural Semantic P...

Yumeto Inaoka
October 24, 2018

文献紹介: Confidence Modeling for Neural Semantic Parsing

2018/10/24の文献紹介で発表

Yumeto Inaoka

October 24, 2018
Tweet

More Decks by Yumeto Inaoka

Other Decks in Research

Transcript

  1. Literature Confidence Modeling for Neural Semantic Parsing Li Dong† and

    Chris Quirk‡ and Mirella Lapata† †School of Informatics, University of Edinburgh
 ‡Microsoft Research, Redmond Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 743–753, 2018. !2
  2. Neural Semantic Parsing • In: Natural Language
 Out: Logical form

    • Seq2seq with LSTM • Attention mechanism • Maximize the likelihood • Beam Search !5 !5
  3. Confidence Estimation • ೖྗqͱ༧ଌͨ͠ҙຯදݱa͔Β֬৴౓s(q, a) ∈ (0, 1)Λ༧ଌ • ֬৴౓ͷ൑அʹ͸ʮԿΛ஌Βͳ͍͔ʯΛਪఆ͢Δඞཁ͕͋Δ

    • Ϟσϧͷෆ͔֬͞ɺσʔλͷෆ͔֬͞ɺೖྗͷෆ͔֬͞Λجʹ
 ࡞ΒΕΔࢦඪ͔Β֬৴౓ΛճؼϞσϧʹΑͬͯٻΊΔ !6
  4. Dropout Perturbation • DropoutΛςετ࣌ʹ࢖༻
 (ਤதͷi, ii, iii, ivͷՕॴ) • จϨϕϧͰͷࢦඪɿ

    • τʔΫϯϨϕϧͰͷࢦඪɿ • ɹɹ͸ઁಈͤ͞Δύϥϝʔλɹ݁ՌΛूΊͯ෼ࢄΛܭࢉ !8
  5. Posterior Probability • ࣄޙ֬཰ p(a | q)ΛจϨϕϧͰͷࢦඪʹ࢖༻ • τʔΫϯϨϕϧͰ͸ҎԼͷ2ͭΛࢦඪʹ࢖༻ •

    ɹɹɹɹɹɹɹɹɹɹɹɹɿ࠷΋ෆ͔֬ͳ୯ޠʹண໨ • ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɿτʔΫϯຖͷperplexity !10
  6. Input Uncertainty • Ϟσϧ͕׬ᘳͰ΋ೖྗ͕ᐆດͩͱෆ͔֬͞͸ൃੜ͢Δ
 (e.g. 9 o’clock -> flight_time(9am) or

    flight_time(9pm) ) • ্Ґީิͷ֬཰ͷ෼ࢄΛ༻͍Δ • ΤϯτϩϐʔΛ༻͍Δ
 ← a’͸αϯϓϦϯάۙࣅ !12
  7. Experiments (Datasets) • IFTTT σʔληοτ (train-dev-test : 77,495 - 5,171

    - 4,294) • DJANGO σʔληοτ (train-dev-test : 16,000 - 1,000 - 1,805)
 !15
  8. Experiments (Settings) • Dropout Perturbation
 Dropout rate͸0.1ɺ30ճ࣮ߦͯ͠෼ࢄΛܭࢉ • Gaussian Noise


    ඪ४ภࠩΛ0.05ʹઃఆ • Probability of Input
 ݴޠϞσϧͱͯ͠KenLMΛ࢖༻ • Input Uncertainty
 10-best ͷީิ͔Β෼ࢄΛܭࢉ !16
  9. Conclusions • Neural Semantic ParsingͷͨΊͷ֬৴౓ਪఆϞσϧΛఏࣔ • ෆ͔֬͞ΛೖྗτʔΫϯϨϕϧͰղऍ͢Δํ๏Λఏࣔ • IFTTT, DJANGOσʔληοτʹ͓͍ͯ༗ޮੑΛ֬ೝ

    • ఏҊϞσϧ͸Seq2seqΛ࠾༻͢Δ༷ʑͳλεΫͰద༻Մೳ • Neural Semantic ParsingͷActive Learningʹ͓͍ͯར༻Ͱ͖Δ !23