Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Confidence Modeling for Neural Semantic P...
Search
Yumeto Inaoka
October 24, 2018
Research
3
240
文献紹介: Confidence Modeling for Neural Semantic Parsing
2018/10/24の文献紹介で発表
Yumeto Inaoka
October 24, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
370
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
250
Other Decks in Research
See All in Research
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
200
CoRL2025速報
rpc
4
4k
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
170
説明可能な機械学習と数理最適化
kelicht
2
900
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
960
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
420
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
870
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
180
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
110
20年前に50代だった人たちの今
hysmrk
0
130
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
140
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
210
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
600
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
75
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
370
Optimizing for Happiness
mojombo
379
71k
Music & Morning Musume
bryan
47
7.1k
Done Done
chrislema
186
16k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
The SEO identity crisis: Don't let AI make you average
varn
0
61
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
150
Transcript
Confidence Modeling for Neural Semantic Parsing จݙհɹ Ԭٕज़Պֶେֶɹࣗવݴޠॲཧݚڀࣨ ҴԬɹເਓ
Literature Confidence Modeling for Neural Semantic Parsing Li Dong† and
Chris Quirk‡ and Mirella Lapata† †School of Informatics, University of Edinburgh ‡Microsoft Research, Redmond Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 743–753, 2018. !2
Abstract • Neural Semantic Parsing (seq2seq) ʹ͓͚Δ֬৴ϞσϦϯά • ೖྗͷͲ͕͜ෆ͔֬͞ͷཁҼʹͳ͍ͬͯΔ͔Λࣝผ •
ࣄޙ֬ɺΞςϯγϣϯʹґଘ͢Δख๏ΑΓ༏ल !3
Introduction • Neural Semantic ParsingظͰ͖Δ݁ՌΛग़͢ҰํͰ ग़ྗͷݪҼ͕ղऍͮ͠Β͍ϒϥοΫϘοΫεͱͯ͠ಈ࡞ • Ϟσϧͷ༧ଌʹର͢Δ֬৴ͷਪఆʹΑͬͯ༗ҙٛͳ ϑΟʔυόοΫ͕ՄೳʹͳΔͷͰͳ͍͔ •
֬৴ͷείΞϦϯάख๏ࣄޙ֬ p(y|x) ͕Α͘༻͞ΕΔ → ઢܗϞσϧͰ༗ޮ͕ͩχϡʔϥϧϞσϧͰྑ͘ͳ͍ !4
Neural Semantic Parsing • In: Natural Language Out: Logical form
• Seq2seq with LSTM • Attention mechanism • Maximize the likelihood • Beam Search !5 !5
Confidence Estimation • ೖྗqͱ༧ଌͨ͠ҙຯදݱa͔Β֬৴s(q, a) ∈ (0, 1)Λ༧ଌ • ֬৴ͷஅʹʮԿΛΒͳ͍͔ʯΛਪఆ͢Δඞཁ͕͋Δ
• Ϟσϧͷෆ͔֬͞ɺσʔλͷෆ͔֬͞ɺೖྗͷෆ͔֬͞Λجʹ ࡞ΒΕΔࢦඪ͔Β֬৴ΛճؼϞσϧʹΑͬͯٻΊΔ !6
Model Uncertainty • ϞσϧͷύϥϝʔλߏʹΑΔෆ͔֬͞Ͱ֬৴͕Լ ← ྫ͑܇࿅σʔλʹؚ·ΕΔϊΠζ֬తֶशΞϧΰϦζϜ • Dropout Perturbation, Gaussian
Noise, Posterior Probability͔Β ࢦඪΛ࡞͠ɺෆ͔֬͞Λ༧ଌ !7
Dropout Perturbation • DropoutΛςετ࣌ʹ༻ (ਤதͷi, ii, iii, ivͷՕॴ) • จϨϕϧͰͷࢦඪɿ
• τʔΫϯϨϕϧͰͷࢦඪɿ • ɹɹઁಈͤ͞Δύϥϝʔλɹ݁ՌΛूΊͯࢄΛܭࢉ !8
Gaussian Noise • Gaussian NoiseΛϕΫτϧՃ͑ͯDropoutͱಉ༷ʹࢄΛܭࢉ ← DropoutϕϧψʔΠɺ͜ΕΨεʹै͏ϊΠζ • ϊΠζͷՃ͑ํҎԼͷ2ͭ (vݩͷϕΫτϧ,
gGaussian Noise) !9
Posterior Probability • ࣄޙ֬ p(a | q)ΛจϨϕϧͰͷࢦඪʹ༻ • τʔΫϯϨϕϧͰҎԼͷ2ͭΛࢦඪʹ༻ •
ɹɹɹɹɹɹɹɹɹɹɹɹɿ࠷ෆ͔֬ͳ୯ޠʹண • ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɿτʔΫϯຖͷperplexity !10
Data Uncertainty • ܇࿅σʔλͷΧόϨοδෆ͔֬͞ʹӨڹΛ༩͑Δ • ܇࿅σʔλͰݴޠϞσϧΛֶशͤ͞ɺೖྗͷݴޠϞσϧ֬Λ ࢦඪʹ༻͍Δ • ೖྗͷະޠτʔΫϯΛࢦඪʹ༻͍Δ !11
Input Uncertainty • Ϟσϧ͕ᘳͰೖྗ͕ᐆດͩͱෆ͔֬͞ൃੜ͢Δ (e.g. 9 o’clock -> flight_time(9am) or
flight_time(9pm) ) • ্Ґީิͷ֬ͷࢄΛ༻͍Δ • ΤϯτϩϐʔΛ༻͍Δ ← a’αϯϓϦϯάۙࣅ !12
Confidence Storing • ͜ΕΒͷ༷ʑͳࢦඪΛ༻͍ͯ֬৴ͷείΞϦϯάΛߦ͏ • ޯϒʔεςΟϯάϞσϧʹ֤ࢦඪΛ༩ֶ͑ͯशͤ͞Δ ग़ྗ͕0ʙ1ʹͳΔΑ͏ϩδεςΟοΫؔͰϥοϓ • ޯϒʔεςΟϯάϞσϧҎԼͷղઆهࣄ͕͔Γ͍͢ (ʮGradient
Boosting ͱ XGBoostʯ: ɹ https://zaburo-ch.github.io/post/xgboost/ ) !13
Uncertainty Interpretation • Ͳͷೖྗ͕ෆ͔֬͞ʹ࡞༻͍ͯ͠Δ͔Λಛఆ → ͦͷೖྗΛಛผͳέʔεͱͯ͠ѻ͏͕ग़དྷΔ • ༧ଌ͔ΒೖྗτʔΫϯؒ·ͰΛٯൖ → ֤τʔΫϯͷෆ͔֬͞ͷد༩͕Θ͔Δ
!14
Experiments (Datasets) • IFTTT σʔληοτ (train-dev-test : 77,495 - 5,171
- 4,294) • DJANGO σʔληοτ (train-dev-test : 16,000 - 1,000 - 1,805) !15
Experiments (Settings) • Dropout Perturbation Dropout rate0.1ɺ30ճ࣮ߦͯ͠ࢄΛܭࢉ • Gaussian Noise
ඪ४ภࠩΛ0.05ʹઃఆ • Probability of Input ݴޠϞσϧͱͯ͠KenLMΛ༻ • Input Uncertainty 10-best ͷީิ͔ΒࢄΛܭࢉ !16
Experiments (Results) • Model Uncertainty͕࠷ޮՌత • Data UncertaintyӨڹ͕খ͍͞ → In-domainͰ͋ΔͨΊ
!17
Experiments (Results) !18
Experiments (Results) • Model Uncertaintyͷ ࢦඪ͕ॏཁ • ಛʹIFTTT#UNKͱ Var͕ॏཁ !19
Experiments (Results) !20
Experiments (Results) • ϊΠζΛՃ͑ͨτʔΫϯྻͱ ٯൖͰಘͨτʔΫϯྻͷ ΦʔόʔϥοϓͰධՁ • Attentionͱൺֱͯ͠ߴ͍ • K=4ʹ͓͍ͯ80%͕Ұக
!21
Experiments (Results) !22
Conclusions • Neural Semantic ParsingͷͨΊͷ֬৴ਪఆϞσϧΛఏࣔ • ෆ͔֬͞ΛೖྗτʔΫϯϨϕϧͰղऍ͢Δํ๏Λఏࣔ • IFTTT, DJANGOσʔληοτʹ͓͍ͯ༗ޮੑΛ֬ೝ
• ఏҊϞσϧSeq2seqΛ࠾༻͢Δ༷ʑͳλεΫͰద༻Մೳ • Neural Semantic ParsingͷActive Learningʹ͓͍ͯར༻Ͱ͖Δ !23