Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Confidence Modeling for Neural Semantic P...
Search
Yumeto Inaoka
October 24, 2018
Research
3
220
文献紹介: Confidence Modeling for Neural Semantic Parsing
2018/10/24の文献紹介で発表
Yumeto Inaoka
October 24, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
160
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
140
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
220
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Research
See All in Research
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
220
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
240
SkySense : A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
satai
3
230
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
220
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
140
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
600
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
170
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
210
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
Self-supervised audiovisual representation learning for remote sensing data
satai
3
210
NLP2025SharedTask翻訳部門
moriokataku
0
290
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
230
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
34k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Documentation Writing (for coders)
carmenintech
71
4.9k
Automating Front-end Workflow
addyosmani
1370
200k
Writing Fast Ruby
sferik
628
61k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Statistics for Hackers
jakevdp
799
220k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
920
Navigating Team Friction
lara
187
15k
Speed Design
sergeychernyshev
31
1k
Transcript
Confidence Modeling for Neural Semantic Parsing จݙհɹ Ԭٕज़Պֶେֶɹࣗવݴޠॲཧݚڀࣨ ҴԬɹເਓ
Literature Confidence Modeling for Neural Semantic Parsing Li Dong† and
Chris Quirk‡ and Mirella Lapata† †School of Informatics, University of Edinburgh ‡Microsoft Research, Redmond Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 743–753, 2018. !2
Abstract • Neural Semantic Parsing (seq2seq) ʹ͓͚Δ֬৴ϞσϦϯά • ೖྗͷͲ͕͜ෆ͔֬͞ͷཁҼʹͳ͍ͬͯΔ͔Λࣝผ •
ࣄޙ֬ɺΞςϯγϣϯʹґଘ͢Δख๏ΑΓ༏ल !3
Introduction • Neural Semantic ParsingظͰ͖Δ݁ՌΛग़͢ҰํͰ ग़ྗͷݪҼ͕ղऍͮ͠Β͍ϒϥοΫϘοΫεͱͯ͠ಈ࡞ • Ϟσϧͷ༧ଌʹର͢Δ֬৴ͷਪఆʹΑͬͯ༗ҙٛͳ ϑΟʔυόοΫ͕ՄೳʹͳΔͷͰͳ͍͔ •
֬৴ͷείΞϦϯάख๏ࣄޙ֬ p(y|x) ͕Α͘༻͞ΕΔ → ઢܗϞσϧͰ༗ޮ͕ͩχϡʔϥϧϞσϧͰྑ͘ͳ͍ !4
Neural Semantic Parsing • In: Natural Language Out: Logical form
• Seq2seq with LSTM • Attention mechanism • Maximize the likelihood • Beam Search !5 !5
Confidence Estimation • ೖྗqͱ༧ଌͨ͠ҙຯදݱa͔Β֬৴s(q, a) ∈ (0, 1)Λ༧ଌ • ֬৴ͷஅʹʮԿΛΒͳ͍͔ʯΛਪఆ͢Δඞཁ͕͋Δ
• Ϟσϧͷෆ͔֬͞ɺσʔλͷෆ͔֬͞ɺೖྗͷෆ͔֬͞Λجʹ ࡞ΒΕΔࢦඪ͔Β֬৴ΛճؼϞσϧʹΑͬͯٻΊΔ !6
Model Uncertainty • ϞσϧͷύϥϝʔλߏʹΑΔෆ͔֬͞Ͱ֬৴͕Լ ← ྫ͑܇࿅σʔλʹؚ·ΕΔϊΠζ֬తֶशΞϧΰϦζϜ • Dropout Perturbation, Gaussian
Noise, Posterior Probability͔Β ࢦඪΛ࡞͠ɺෆ͔֬͞Λ༧ଌ !7
Dropout Perturbation • DropoutΛςετ࣌ʹ༻ (ਤதͷi, ii, iii, ivͷՕॴ) • จϨϕϧͰͷࢦඪɿ
• τʔΫϯϨϕϧͰͷࢦඪɿ • ɹɹઁಈͤ͞Δύϥϝʔλɹ݁ՌΛूΊͯࢄΛܭࢉ !8
Gaussian Noise • Gaussian NoiseΛϕΫτϧՃ͑ͯDropoutͱಉ༷ʹࢄΛܭࢉ ← DropoutϕϧψʔΠɺ͜ΕΨεʹै͏ϊΠζ • ϊΠζͷՃ͑ํҎԼͷ2ͭ (vݩͷϕΫτϧ,
gGaussian Noise) !9
Posterior Probability • ࣄޙ֬ p(a | q)ΛจϨϕϧͰͷࢦඪʹ༻ • τʔΫϯϨϕϧͰҎԼͷ2ͭΛࢦඪʹ༻ •
ɹɹɹɹɹɹɹɹɹɹɹɹɿ࠷ෆ͔֬ͳ୯ޠʹண • ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɿτʔΫϯຖͷperplexity !10
Data Uncertainty • ܇࿅σʔλͷΧόϨοδෆ͔֬͞ʹӨڹΛ༩͑Δ • ܇࿅σʔλͰݴޠϞσϧΛֶशͤ͞ɺೖྗͷݴޠϞσϧ֬Λ ࢦඪʹ༻͍Δ • ೖྗͷະޠτʔΫϯΛࢦඪʹ༻͍Δ !11
Input Uncertainty • Ϟσϧ͕ᘳͰೖྗ͕ᐆດͩͱෆ͔֬͞ൃੜ͢Δ (e.g. 9 o’clock -> flight_time(9am) or
flight_time(9pm) ) • ্Ґީิͷ֬ͷࢄΛ༻͍Δ • ΤϯτϩϐʔΛ༻͍Δ ← a’αϯϓϦϯάۙࣅ !12
Confidence Storing • ͜ΕΒͷ༷ʑͳࢦඪΛ༻͍ͯ֬৴ͷείΞϦϯάΛߦ͏ • ޯϒʔεςΟϯάϞσϧʹ֤ࢦඪΛ༩ֶ͑ͯशͤ͞Δ ग़ྗ͕0ʙ1ʹͳΔΑ͏ϩδεςΟοΫؔͰϥοϓ • ޯϒʔεςΟϯάϞσϧҎԼͷղઆهࣄ͕͔Γ͍͢ (ʮGradient
Boosting ͱ XGBoostʯ: ɹ https://zaburo-ch.github.io/post/xgboost/ ) !13
Uncertainty Interpretation • Ͳͷೖྗ͕ෆ͔֬͞ʹ࡞༻͍ͯ͠Δ͔Λಛఆ → ͦͷೖྗΛಛผͳέʔεͱͯ͠ѻ͏͕ग़དྷΔ • ༧ଌ͔ΒೖྗτʔΫϯؒ·ͰΛٯൖ → ֤τʔΫϯͷෆ͔֬͞ͷد༩͕Θ͔Δ
!14
Experiments (Datasets) • IFTTT σʔληοτ (train-dev-test : 77,495 - 5,171
- 4,294) • DJANGO σʔληοτ (train-dev-test : 16,000 - 1,000 - 1,805) !15
Experiments (Settings) • Dropout Perturbation Dropout rate0.1ɺ30ճ࣮ߦͯ͠ࢄΛܭࢉ • Gaussian Noise
ඪ४ภࠩΛ0.05ʹઃఆ • Probability of Input ݴޠϞσϧͱͯ͠KenLMΛ༻ • Input Uncertainty 10-best ͷީิ͔ΒࢄΛܭࢉ !16
Experiments (Results) • Model Uncertainty͕࠷ޮՌత • Data UncertaintyӨڹ͕খ͍͞ → In-domainͰ͋ΔͨΊ
!17
Experiments (Results) !18
Experiments (Results) • Model Uncertaintyͷ ࢦඪ͕ॏཁ • ಛʹIFTTT#UNKͱ Var͕ॏཁ !19
Experiments (Results) !20
Experiments (Results) • ϊΠζΛՃ͑ͨτʔΫϯྻͱ ٯൖͰಘͨτʔΫϯྻͷ ΦʔόʔϥοϓͰධՁ • Attentionͱൺֱͯ͠ߴ͍ • K=4ʹ͓͍ͯ80%͕Ұக
!21
Experiments (Results) !22
Conclusions • Neural Semantic ParsingͷͨΊͷ֬৴ਪఆϞσϧΛఏࣔ • ෆ͔֬͞ΛೖྗτʔΫϯϨϕϧͰղऍ͢Δํ๏Λఏࣔ • IFTTT, DJANGOσʔληοτʹ͓͍ͯ༗ޮੑΛ֬ೝ
• ఏҊϞσϧSeq2seqΛ࠾༻͢Δ༷ʑͳλεΫͰద༻Մೳ • Neural Semantic ParsingͷActive Learningʹ͓͍ͯར༻Ͱ͖Δ !23