Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度秋学期 統計学 第10回 分布の推測とは - 標本調査,度数分布と確率分布 (20...
Search
Akira Asano
PRO
November 18, 2024
Education
0
6
2024年度秋学期 統計学 第10回 分布の推測とは - 標本調査,度数分布と確率分布 (2024. 11. 27)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024a/STAT/
Akira Asano
PRO
November 18, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
5
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
4
2024年度秋学期 統計学 第9回 確からしさを記述する ― 確率 (2024. 11. 27)
akiraasano
PRO
0
6
2024年度秋学期 統計学 第8回 第1部の演習 (2024. 11. 6)
akiraasano
PRO
0
31
2024年度秋学期 統計学 第7回 データの関係を知る(2)ー 回帰と決定係数 (2024. 11. 6)
akiraasano
PRO
0
63
2024年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2024. 11. 8)
akiraasano
PRO
0
7
2024年度秋学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2024. 10. 30)
akiraasano
PRO
0
52
2024年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例 (2024. 10. 25)
akiraasano
PRO
0
33
2024年度秋学期 画像情報処理 第6回 ベクトルと行列について,高速フーリエ変換 (2024. 10. 25)
akiraasano
PRO
0
14
Other Decks in Education
See All in Education
week15@tcue2024
nonxxxizm
0
570
ACT FAST 20240830
japanstrokeassociation
0
320
東工大 traP Kaggle班 機械学習講習会 2024
abap34
2
310
1113
cbtlibrary
0
260
Algo de fontes de alimentación
irocho
1
340
Kaggle 班ができるまで
abap34
1
190
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
170
【COPILOT無料セミナー】エンゲージメントと自律性の高いプロジェクト型人材育成に向けて~プロジェクト・ベースド・ラーニング(PBL)という選択肢~
copilot
PRO
0
130
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
2.5k
不登校予防・再登校支援プログラムを提供するToCo (トーコ) の会社紹介資料 toco.mom
toco3week
0
390
Blogit opetuksessa
matleenalaakso
0
1.6k
Ch2_-_Partie_2.pdf
bernhardsvt
0
100
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Ruby is Unlike a Banana
tanoku
97
11k
Code Review Best Practice
trishagee
64
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Writing Fast Ruby
sferik
627
61k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
Teambox: Starting and Learning
jrom
133
8.8k
Automating Front-end Workflow
addyosmani
1366
200k
Transcript
関西大学総合情報学部 浅野 晃 統計学 2024年度秋学期 第10回 分布の推測とは - 標本調査,度数分布と 確率分布
「統計学」の後半は 統計的推測💡💡
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 3 ここまでは データを度数分布で整理する 度数分布を要約する(平均・分散) 記述統計学
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 3 ここまでは データを度数分布で整理する 度数分布を要約する(平均・分散) 記述統計学 調べたいデータ全体を調べられるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 4 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 4 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? データ全体の数値をすべて調べるのは, 費用や時間がかかる
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 4 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? データ全体の数値をすべて調べるのは, 費用や時間がかかる 最近はそうでもないのでは…(ぼそ)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 4 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? データ全体の数値をすべて調べるのは, 費用や時間がかかる 最近はそうでもないのでは…(ぼそ) その通りで,「ビッグデータ」という言葉がよく聞かれたこともあり,さらに今は
「機械学習」もさかんになりました。
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 5 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? ※なぜ例が「男性」なのかは,もう少し先で。
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 5 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? データを集める手間は劇的に減ったけれど 測定作業の手間や費用は変わらない ※なぜ例が「男性」なのかは,もう少し先で。
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 5 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? データを集める手間は劇的に減ったけれど 測定作業の手間や費用は変わらない それに,調べると,壊れてしまうものもある ※なぜ例が「男性」なのかは,もう少し先で。
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 5 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか? データを集める手間は劇的に減ったけれど 測定作業の手間や費用は変わらない それに,調べると,壊れてしまうものもある 料理をすべて味見してしまったら,食べるものがなくなってしまう
※なぜ例が「男性」なのかは,もう少し先で。
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 6 日本男性全員の身長を調べられるか? 調べたいデータ全体を調べられるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 6 日本男性全員の身長を調べられるか? データの一部を調べて度数分布を推測する 調べたいデータ全体を調べられるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 6 日本男性全員の身長を調べられるか? データの一部を調べて度数分布を推測する いや,せめて平均や分散を推測する 調べたいデータ全体を調べられるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「統計的推測」とは 6 日本男性全員の身長を調べられるか? データの一部を調べて度数分布を推測する いや,せめて平均や分散を推測する 調べたいデータ全体を調べられるか? 統計的推測
統計的推測の基本は 「くじびき」🎯🎯
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏った抽出をしてしまうと 8 統計的推測は, 集団のデータ全体を調べていないのに, 集団全体のようすを調べようとする
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 偏った抽出をしてしまうと 8 統計的推測は, 結果が間違っている可能性がある 集団のデータ全体を調べていないのに, 集団全体のようすを調べようとする バレーボール🏐🏐やバスケットボール🏀🏀の選手ばかり選んでしまったら 「日本人はすごく背が高い?」
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない 高低まんべんなく選べば, その平均は集団の平均とだいたい同じ
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない 高低まんべんなく選べば, その平均は集団の平均とだいたい同じ それはそうだけど
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない 高低まんべんなく選べば, その平均は集団の平均とだいたい同じ それはそうだけど
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない 高低まんべんなく選べば, その平均は集団の平均とだいたい同じ それはそうだけど
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない 高低まんべんなく選べば, その平均は集団の平均とだいたい同じ それはそうだけど 集団にどんな人👽👽がいるか何も知らないのに
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「まんべんなく」抽出できるか? 9 わざわざ背の高い人ばかり選ぶことはない 高低まんべんなく選べば, その平均は集団の平均とだいたい同じ それはそうだけど 集団にどんな人👽👽がいるか何も知らないのに 選ばれた人が,集団のなかで背が高いか低いかなどわからない
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 公平なくじ引きで選ぶ 10 集団にどんな人がいるか何も知らないのに 選ばれた人が,集団のなかで背が高いか低いかなどわからない
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 公平なくじ引きで選ぶ 10 集団にどんな人がいるか何も知らないのに 選ばれた人が,集団のなかで背が高いか低いかなどわからない 「まんべんなく選ぶ」のは無理
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 公平なくじ引きで選ぶ 10 集団にどんな人がいるか何も知らないのに 選ばれた人が,集団のなかで背が高いか低いかなどわからない 「まんべんなく選ぶ」のは無理 なので
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 公平なくじ引きで選ぶ 10 集団にどんな人がいるか何も知らないのに 選ばれた人が,集団のなかで背が高いか低いかなどわからない 「まんべんなく選ぶ」のは無理 公平なくじ引きで選ぶ なので
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 くじ引きで選ぶと 11 集団からくじびきで選ぶと
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 くじ引きで選ぶと 11 集団からくじびきで選ぶと 偶然,🏐🏐🏀🏀選手のような人ばかりを 選んでしまって,おかしな結果になる可能性が ないわけではないけれど,
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 くじ引きで選ぶと 11 集団からくじびきで選ぶと そうなる確率は小さい 偶然,🏐🏐🏀🏀選手のような人ばかりを 選んでしまって,おかしな結果になる可能性が ないわけではないけれど,
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 くじ引きで選ぶと 11 集団からくじびきで選ぶと そうなる確率は小さい 偶然,🏐🏐🏀🏀選手のような人ばかりを 選んでしまって,おかしな結果になる可能性が ないわけではないけれど, その確率も計算できる。
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 12 データ全体から,いくつかの数値を 公平なくじびきで選ぶ
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 12 データ全体から,いくつかの数値を 公平なくじびきで選ぶ [無作為標本抽出]あるいは [無作為抽出]という
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 12 データ全体から,いくつかの数値を 公平なくじびきで選ぶ [無作為標本抽出]あるいは [無作為抽出]という
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 12 データ全体から,いくつかの数値を 公平なくじびきで選ぶ [無作為標本抽出]あるいは [無作為抽出]という 調べたい(が全部を調べるのは無理な)集団[母集団]
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 12 データ全体から,いくつかの数値を 公平なくじびきで選ぶ [無作為標本抽出]あるいは [無作為抽出]という 調べたい(が全部を調べるのは無理な)集団[母集団]
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 12 データ全体から,いくつかの数値を 公平なくじびきで選ぶ [無作為標本抽出]あるいは [無作為抽出]という 調べたい(が全部を調べるのは無理な)集団[母集団] 調べられる程度のデータ[標本(サンプル)]
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 無作為抽出 13 集団からくじびきで選ぶと 母集団の度数分布 (実際には不明) 無作為抽出すると こんなふうに偏る 可能性は少ない
大小さまざまな データが選ばれる 可能性が高い 母集団の度数分布 (実際には不明) ★たくさんの人を抽出すると,偏らないか? 無作為抽出なら,そう期待できる。(今日の後半) 無作為抽出でなければ,必ずしもそうではない。 (ツイッターのTLは「鏡に映った自分の意見」)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本「サイズ」 14 「母集団」や「標本」という言葉は, 「データ」と同様,数値の集まりをさす(1つ1つの数値ではない)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本「サイズ」 14 「母集団」や「標本」という言葉は, 「データ」と同様,数値の集まりをさす(1つ1つの数値ではない) 母集団も標本も,その中に含まれる数値の個数を 大きさ(サイズ)という ([標本サイズ]とはいうが,標本数やサンプル数とはいわない)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本「サイズ」 14 「母集団」や「標本」という言葉は, 「データ」と同様,数値の集まりをさす(1つ1つの数値ではない) 母集団も標本も,その中に含まれる数値の個数を 大きさ(サイズ)という ([標本サイズ]とはいうが,標本数やサンプル数とはいわない) 家族(family)という言葉に似ている
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本「サイズ」 14 「母集団」や「標本」という言葉は, 「データ」と同様,数値の集まりをさす(1つ1つの数値ではない) 母集団も標本も,その中に含まれる数値の個数を 大きさ(サイズ)という ([標本サイズ]とはいうが,標本数やサンプル数とはいわない) 家族(family)という言葉に似ている
※「母集団のサイズ」を母数とはいいません。母数は別の意味です(よくある誤り)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本「サイズ」 14 「母集団」や「標本」という言葉は, 「データ」と同様,数値の集まりをさす(1つ1つの数値ではない) 母集団も標本も,その中に含まれる数値の個数を 大きさ(サイズ)という ([標本サイズ]とはいうが,標本数やサンプル数とはいわない) 家族(family)という言葉に似ている
※「母集団のサイズ」を母数とはいいません。母数は別の意味です(よくある誤り) ※「サンプル数」という誤った表記をよく見かけますが,標本サイズは数えられる 程度の数であることが多いからでしょうか。
度数分布と確率分布🤔🤔
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布と確率分布 16 標本を無作為抽出するとき ある数値が出てくる確率がどのくらいになるか
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布と確率分布 16 標本を無作為抽出するとき ある数値が出てくる確率がどのくらいになるか さっきの 「偏った数値ばかり選んでしまう」確率を求めるのにも必要
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「公平なくじびき」と当たり確率 17 この中に入っている当たりくじの割合が 20%とする https://illpop.com/png_season/dec01_a07.htm
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「公平なくじびき」と当たり確率 17 くじを1回ひいて,当たる確率は? この中に入っている当たりくじの割合が 20%とする https://illpop.com/png_season/dec01_a07.htm
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「公平なくじびき」と当たり確率 17 くじを1回ひいて,当たる確率は? この中に入っている当たりくじの割合が 20%とする 20% https://illpop.com/png_season/dec01_a07.htm
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「公平なくじびき」と当たり確率 17 くじを1回ひいて,当たる確率は? この中に入っている当たりくじの割合が 20%とする 20% 本当? https://illpop.com/png_season/dec01_a07.htm
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「公平なくじびき」と当たり確率 18 これが本当であるためには, 当たりくじの割合が20%なら, 当たる確率も20% ・どのくじも同じ確率で選ばれる ・ある回のくじびきの結果が,他の回に影響しない(独立)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「公平なくじびき」と当たり確率 19 どのくじも同じ確率で選ばれるのなら, くじの総数のうち20%が当たり →当たりが出る確率は20% (ラプラスの確率の定義)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布で考えると 20 階級値 . .. 162.5 167.5 172.5
相対度数 15% 20% 20% 10% 177.5 . .. 母集団の度数分布 無作為抽出 階級値172.5の人が 選ばれる確率は
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布で考えると 20 階級値 . .. 162.5 167.5 172.5
相対度数 15% 20% 20% 10% 177.5 . .. 母集団の度数分布 無作為抽出 階級値172.5の人が 選ばれる確率は 20%
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布で考えると 21 階級値 162.5 167.5 172.5 相対度数 15%
20% 20% 10% 177.5 母集団の度数分布 無作為抽出 どの階級についても同じだから 階級値 162.5 167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 度数分布で考えると 21 階級値 162.5 167.5 172.5 相対度数 15%
20% 20% 10% 177.5 母集団の度数分布 無作為抽出 どの階級についても同じだから 階級値 162.5 167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の[確率分布]
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 22 母集団の度数分布 (母集団分布) = つまり 階級値 162.5
167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の確率分布
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 22 母集団の度数分布 (母集団分布) = つまり 階級値 162.5
167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の確率分布 標本は, 値がいくらになるかは決まっていない
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 22 母集団の度数分布 (母集団分布) = つまり 階級値 162.5
167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の確率分布 標本は, 値がいくらになるかは決まっていない しかし確率分布が決まっている (知っているかどうかは別)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 22 母集団の度数分布 (母集団分布) = つまり 階級値 162.5
167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の確率分布 標本は, 値がいくらになるかは決まっていない しかし確率分布が決まっている (知っているかどうかは別) こういう数を[確率変数]という (中国語では随機変数)
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 確率分布と確率変数 22 母集団の度数分布 (母集団分布) = つまり 階級値 162.5
167.5 172.5 選ばれる確率 15% 20% 20% 10% 177.5 標本の確率分布 標本は, 値がいくらになるかは決まっていない しかし確率分布が決まっている (知っているかどうかは別) こういう数を[確率変数]という (中国語では随機変数) 「標本は,確率変数(の一種)である」
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 何が知りたいのか 23 母集団の度数分布が知りたい 標本の確率分布を推定すればよい 標本の確率分布,推定できる?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 何が知りたいのか 23 母集団の度数分布が知りたい 標本の確率分布を推定すればよい 標本の確率分布,推定できる? それは,「くじの結果から当たり確率を推定する」のと同じ
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 何が知りたいのか 23 母集団の度数分布が知りたい 標本の確率分布を推定すればよい 標本の確率分布,推定できる? くじを1本だけひいても,当たり確率はわからない それは,「くじの結果から当たり確率を推定する」のと同じ
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 何が知りたいのか 23 母集団の度数分布が知りたい 標本の確率分布を推定すればよい 標本の確率分布,推定できる? くじを1本だけひいても,当たり確率はわからない どうする? それは,「くじの結果から当たり確率を推定する」のと同じ
標本平均と母平均🤔🤔
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 25 標本として数値をいくつか取り出して, それらの平均 母平均が知りたい 母集団 (日本男性全体) 母平均
μ が,日本男性全員は調べられない [標本平均]
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 25 標本として数値をいくつか取り出して, それらの平均 母平均が知りたい 母集団 (日本男性全体) 母平均
μ が,日本男性全員は調べられない [標本平均] 標本平均は母平均に近い値になるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 26 母集団 (日本男性全体) 母平均 μ [標本平均] 標本平均は母平均に近い値になるか?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 26 母集団 (日本男性全体) 母平均 μ [標本平均] 標本平均は母平均に近い値になるか?
もし偏った標本が得られていたら, 標本平均は母平均と大きく食い違うことに
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 27 母集団 母平均 μ 母分散 σ2 X1
X2 … Xn サイズ の標本1セット n 標本平均 ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 27 母集団 母平均 μ 仮に,何度も標本を抽出したとしたら? 母分散 σ2
X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 母平均 μ 母分散 σ2 母集団
X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 母平均 μ 母分散 σ2 母集団
X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 母平均 μ 母分散 σ2 母集団
X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 母平均 μ 母分散 σ2 母集団
X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 母平均 μ 母分散 σ2 母集団
X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 のさまざまな可能性 その平均を, X1 母平均 μ
母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 の期待値と分散は X1 28 のさまざまな可能性 その平均を, X1 [期待値] μ
分散 σ2 期待値とは? 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 期待値とは? 29 母集団 サイズ の標本1セット n 標本平均 期待値は平均の一種で「すべての可能性にわたっての平均」
母平均 μ 母分散 σ2 X1 X2 … Xn ¯ X X1 X1
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 期待値とは? 29 母集団 サイズ の標本1セット n 標本平均 期待値は平均の一種で「すべての可能性にわたっての平均」
の期待値= のすべての可能性にわたっての平均 X1 X1 母平均 μ 母分散 σ2 X1 X2 … Xn ¯ X X1 X1
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 期待値とは? 29 母集団 サイズ の標本1セット n 標本平均 期待値は平均の一種で「すべての可能性にわたっての平均」
の期待値= のすべての可能性にわたっての平均 X1 X1 母集団のすべての数値を取り出すのと同じだから, 母平均 と同じ μ 母平均 μ 母分散 σ2 X1 X2 … Xn ¯ X X1 X1
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 期待値とは? 29 母集団 サイズ の標本1セット n 標本平均 期待値は平均の一種で「すべての可能性にわたっての平均」
の期待値= のすべての可能性にわたっての平均 X1 X1 母集団のすべての数値を取り出すのと同じだから, 母平均 と同じ μ の分散も 母分散 と同じ X1 σ2 母平均 μ 母分散 σ2 X1 X2 … Xn ¯ X X1 X1
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 30 母集団 サイズnの標本1セット 標本平均 から のなかに極端な数値があっても, X1
Xn 172 195 153 母平均 μ 母分散 σ2 X1 X2 … Xn ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 30 母集団 サイズnの標本1セット 標本平均 から のなかに極端な数値があっても, X1
Xn 172 195 153 個の数値を平均すれば, そんなに極端な数値にはまずならない (極端な数値の影響が に薄められる) n 1/n 母平均 μ 母分散 σ2 X1 X2 … Xn ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 31 母集団と同じ 期待値 μ 分散 σ2 母平均
μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 31 母集団と同じ 期待値 μ 分散 σ2 母平均
μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 31 母集団と同じ 期待値 μ 分散 σ2 極端な値はあまりないので
分散が小さくなる 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 31 母集団と同じ 期待値 μ 分散 σ2 極端な値はあまりないので
分散が小さくなる 期待値 μ 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 31 母集団と同じ 期待値 μ 分散 σ2 極端な値はあまりないので
分散が小さくなる 期待値 μ 分散 / σ2 n 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本平均の期待値と分散は 31 母集団と同じ 期待値 μ 分散 σ2 極端な値はあまりないので
分散が小さくなる 期待値 μ 分散 / σ2 n 標本平均の分散は,母分散の「標本サイズ分の一」になる 母平均 μ 母分散 σ2 母集団 X1 X2 … Xn サイズ の標本1セット n 標本平均 ¯ X X1 X2 … Xn ¯ X X1 X2 … Xn ¯ X … …
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ ¯ X ¯ X ¯ X ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ いつ計算しても,たいていそれほど変わらない ¯ X ¯ X ¯ X ¯ X
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ いつ計算しても,たいていそれほど変わらない ¯ X ¯ X ¯ X ¯ X いま1回だけ計算した標本平均は,上のどれなのかわからないが
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ いつ計算しても,たいていそれほど変わらない ¯ X ¯ X ¯ X ¯ X いま1回だけ計算した標本平均は,上のどれなのかわからないが ? ? ? ?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定 32 母平均が 母分散が μ σ2 のとき, 標本平均の期待値が
標本平均の分散が μ σ2/n 仮に,何度も標本を抽出して,何度も標本平均を計算したとすると 分散が小さくなっているので,「たいてい,ほぼ」母平均に近い 標本平均を 何度も計算しても μ いつ計算しても,たいていそれほど変わらない ¯ X ¯ X ¯ X ¯ X いま1回だけ計算した標本平均は,上のどれなのかわからないが ? ? ? ? たいてい,ほぼ母平均に近い値だろう
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定へ 33 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定へ 33 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定へ 33 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定へ 33 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定へ 33 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い? どのくらいの確率で? はずれる確率は?
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 母平均の推定へ 33 いま1回だけ計算した標本平均は, 「たいてい,ほぼ」母平均に近い値だろう どのくらい近い? どのくらいの確率で? はずれる確率は? このあたりから次回へ
理想的な無作為抽出とは🎯🎯
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 復元抽出と非復元抽出 35 出たくじをすぐに箱に戻す [復元抽出] ・どのくじも同じ確率で選ばれる ・ある回のくじびきの結果が,他の回に影響しない(独立) こうであるためには, 理想的な無作為抽出は,「公平なくじびき」
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 「標本の大きさ」の意味 36 母分散が のとき,標本平均の分散が σ2 σ2/n 標本平均の分散に関係しているのは 標本の大きさであって,母集団の大きさは関係ない
推測の確かさに影響するのは 標本の大きさであって, 標本の大きさの,母集団の大きさに対する割合 ではない
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本の大きさとは 37 「10人からなる標本」の意味は, 1,000人からなる母集団でも100,000人からなる母集団でも同じ 🤔🤔… 理想的な無作為抽出では,復元抽出を行う 標本サイズは, 「取り出された数値の個数」というよりも
「同一の母集団から数値ひとつひとつを取り出す回数」 → 母集団の大きさに対する割合は無関係
37 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 標本の大きさとは 37 「10人からなる標本」の意味は, 1,000人からなる母集団でも100,000人からなる母集団でも同じ 🤔🤔… 理想的な無作為抽出では,復元抽出を行う 標本サイズは, 「取り出された数値の個数」というよりも
「同一の母集団から数値ひとつひとつを取り出す回数」 → 母集団の大きさに対する割合は無関係 (非復元抽出をした場合は,計算で補正する方法がある)