Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GCPを活用した物流倉庫内の異常検知/Anomaly detection in distri...
Search
ASKUL Engineer
September 12, 2019
Technology
0
3.2k
GCPを活用した物流倉庫内の異常検知/Anomaly detection in distribution warehouse using GCP
Google Cloud NEXT '19 in Tokyo での発表資料です。
https://cloud.withgoogle.com/next/tokyo
ASKUL Engineer
September 12, 2019
Tweet
Share
More Decks by ASKUL Engineer
See All by ASKUL Engineer
EditorConfigで導くコードの「美しさ」
askul
0
520
いまさら聞けないAWS
askul
0
4.9k
CTOが語る、テックカンパニーに向けた未来の話。by アスクル
askul
0
130
チームでリーダブルコードを実現するには?
askul
0
2.7k
ラズパイを使ってスマートリモコンを作ってみた
askul
0
670
Discord Bot はじめの一歩
askul
0
540
10分で「エラスティックリーダーシップ」をアウトプット
askul
0
2.8k
1on1をする上で大切なこと
askul
1
650
JBUG東京#20 〜そこが知りたい!Backlog活用術〜
askul
1
2.7k
Other Decks in Technology
See All in Technology
ファインディにおけるフロントエンド技術選定の歴史
puku0x
1
110
Azure Verified Moduleを触って分かった注目ポイント/azure-verified-module-begin
mhrtech
1
510
今こそ変化対応力を向上させるとき 〜ログラスが FAST に挑戦する理由〜 / Why Loglass is Talking on the Challenge of Agile Framework FAST
shioyang
0
170
トークナイザー入門
payanotty
2
1k
ADRを運用して3年経った僕らの現在地
onk
PRO
13
6k
Applied NLP with LLMs: Beyond Black-Box Monoliths
inesmontani
PRO
0
100
見えづらい活動の成果の伝え方は日頃からめちゃくちゃ悩んでるけど、実際こんな取り組みをしな がら温度感を合わせにいってるよ / Conveying Hard-to-See Results
kakehashi
4
2k
What a Good Platform Looks Like and How to Get There @ Large Financial Organization, Oct 2024
mfpais
PRO
0
100
軽いノリで"自動化"に取り組んではいけないという話
tetsuyaooooo
1
620
テストを楽に書きたい
tomorrowkey
1
220
Databricks Appのご紹介
databricksjapan
0
400
Perlで始めるeBPF: 自作Loaderの作り方 / Getting started with eBPF in Perl_How to create your own Loader
takehaya
1
1k
Featured
See All Featured
In The Pink: A Labor of Love
frogandcode
139
22k
Code Reviewing Like a Champion
maltzj
519
39k
Embracing the Ebb and Flow
colly
84
4.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
46
2k
Optimising Largest Contentful Paint
csswizardry
31
2.8k
Building Your Own Lightsaber
phodgson
102
6k
WebSockets: Embracing the real-time Web
robhawkes
59
7.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
130k
Six Lessons from altMBA
skipperchong
26
3.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Invisible Customer
myddelton
119
13k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Transcript
三井 康行 GCP を活用した物流倉庫内の異常検知 アスクル株式会社 先端テクノロジー 主任研究員
自己紹介
自己紹介 氏名: 三井 康行 略歴: 2003 年 ~ 国内大手電機メーカー研究員 テキスト音声合成等,音声言語処理の基礎研究
2016 年 10 月 ~ 現職 現在のテーマ: 機械学習を用いた最適化 在庫配置,配送,需要予測,etc. その他諸々(予知保全,データ基盤整備,庫内自動化,etc.)
アスクルのご紹介
事業概要 1993 年 事業所向け (BtoB) 通販事業開始 2012 年 個人消費者向け (BtoC)
通販事業開始 (LOHACO)
連結売上高の推移 FY2018 FY2010 FY2000 FY1994 (億円) 3,500 3,000 2,500 2,000
1,500 1,000 500
取扱商品 BtoB BtoC
アスクルの物流基盤
アスクルの物流倉庫における自動化
ASKUL Value Center 関西(AVC関西) 稼働開始:2018 年 延床面積:約 5 万坪
ASKUL Value Center 関西(AVC関西) 稼働開始:2018 年 延床面積:約 5 万坪 コンセプト:人が歩かない物流センター
コンベヤ長:20km 超 自動化比率:約 80%
紹介動画 (イベント時のみ再生)
自動化推進に伴う課題
膨大な量の設備 • 24/7 のメンテナンス ◦ 設備故障がお客様に直結 ◦ サービスレベルの維持 • 設備専門スタッフの現場常駐
◦ 特殊な技能を有する人材確保 ◦ 全国に展開する倉庫 「明日来る」のために
保全コスト • 定期的なメンテナンス ◦ 故障していない箇所も点検/交換対象 ◦ コスト大 予防保全の限界
予知保全への転換 • 故障を事前に予測 ◦ サービスレベルの維持 ◦ 人員配置の適正化 • 適切なタイミングで保全 ◦
保全コストの最適化
GCP を活用した異常検知
バーコードリーダー(BCR) • バーコードを読み取る機械 ◦ 段ボール ◦ コンテナ • 固定式
コンテナ
BCR の用途 • バーコードの持つ情報 ◦ 商品情報:倉庫管理システム(WMS)と連携 • バーコード読取後の処理 ◦ コンベア分岐部での進路決定
◦ 後工程への商品情報伝達
No Read Error • BCR のエラー ◦ バーコードの読取に失敗 • 原因
◦ 高速移動 ◦ バーコードの擦れ ◦ 振動等による BCR 本体のズレ ◦ BCRの異常(設定ミス,故障)
対応 • エラー時の個別対応は困難 ◦ 日常的に読取失敗が発生 ◦ 少数回のエラーは様子見 • 頻発する場合 ◦
点検 ◦ 調整 ◦ 交換 主に事後対応 エラー 故障
事前把握は可能? • 倉庫内でのエラー確認は困難 ◦ 数百台 @ AVC 関西 ◦ エラー表示端末が倉庫内に点在
◦ 全件確認に数時間 • 異常判断が困難 ◦ 何回エラーを出したら異常? ◦ 徐々に/急に増えたら異常? 従来設備では不可能
やりたかったこと 1. No Read Error の時系列変化が見たい! 2. No Read Error
が頻発する BCR をいち早く把握したい!
GCP の活用 データ処理 ログ蓄積 見える化
データフロー 設備稼働 log 確認 点検 処置
BigQuery によるデータ蓄積 • 設備稼働ログを BigQuery に蓄積 ◦ 全 BCR について
▪ 正常通過回数 ▪ No Read Error 回数 • データ可用性を重視
Compute Engine によるデータ処理 1. Data Portal 用データ加工 ◦ BigQuery +
python(pandas + pandas_gbq) にて実装 ◦ 一定期間毎のエラー率,エラー回数累計等を計算 2. Slack を用いたアラート発報 ◦ 1 日1 回アラートを発報 ◦ 対話形式で対応済機器を登録
Slack 画面イメージ(アラート時) 日付 BCR位置 NR率 NR回数 通過回数 20190701 3F_A_GTP_15_S 1.09
20 1809 20190701 4F_C_GTP_03_S 3.56 98 2756 20190701 3F_A_GTP_IN_A1_E 2.53 25 987 2019年7月1日分のBCR No Readアラートをお知らせします。 AVCK_bot アプリ 10:15 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/06/29 対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。 送信 +
Slack 画面イメージ(対応時) 送信 + 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/07/01 対応済 】 「4F_C_GTP_03_S」が2回
それぞれ閾値を超えています。
Slack 画面イメージ(対応時) 送信 + 4F_C_GTP_03_S 対応完了 @AVCK_bot 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/07/01
対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。
Slack 画面イメージ(対応時) 4F_C_GTP_03_S 対応完了 三井_yasuyuki_mitsui 12:30 送信 + 過去5日間で 「3F_A_GTP_15_S」が3回【
2019/07/01 対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。 @AVCK_bot
Slack 画面イメージ(対応時) 三井_yasuyuki_mitsui 12:30 @yasuyuki_mitsui: 「4F_C_GTP_03_S」を対応済リストに登録しました。 送信 + アプリ AVCK_bot
12:30 過去5日間で 「3F_A_GTP_15_S」が3回【 2019/07/01 対応済 】 「4F_C_GTP_03_S」が2回 それぞれ閾値を超えています。 4F_C_GTP_03_S 対応完了 @AVCK_bot
Data Portal によるグラフ化 • BigQuery に蓄積されたデータをグラフ化 ◦ No Read Error
率を時系列可視化 ◦ Error 率の推移を確認 • 現場スタッフによる UI 利用 ◦ 対象 BCR のフィルタリング ◦ 表示期間指定
Data Portal によるグラフ化の例
Data Portal によるグラフ化の例 • 直感的で分かりやすい UI • BigQuery と連動してグラフが自動更新
現場からの声 • 「エラーが頻発している BCR をいち早く把握することで重大な 問題に発展する前に対応できるようになった」 • 「エラー多発の要因分析ができるようになった」 • 「他の機器にも展開したい」
おわりに
今後の展開 • 予知保全の実現へ ◦ No Read Error 傾向と現場対応実績との相関分析 ◦ 対応方針を推測
◦ 故障時期の予測 • BCR 以外への設備への展開
GCPとの連携強化(予知保全以外) • スタンドアロンなデータ同士の GCP 上で連携 ◦ 在庫 ◦ 売上 ◦
配送 ◦ 販促 etc. • 未来の姿:全てのデータを GCP 上で処理 ◦ 分析 ◦ 予測(機械学習)