Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20210909AI/DX勉強会
Search
TakumaYoshioka
September 09, 2021
Business
0
180
20210909AI/DX勉強会
AI/DXの基礎を理解して、道具としての活用を学ぶワークショップ
TakumaYoshioka
September 09, 2021
Tweet
Share
More Decks by TakumaYoshioka
See All by TakumaYoshioka
新着論文をChatGPTに要約してもらってSlackに通知する(RSS編)
daikichidaze
0
450
No code / Low codeツール活用・導入における考え方
daikichidaze
0
130
『しっかり学ぶ数理最適化』第2章 2.1節 数理最適化入門 - 学習まとめ資料 -
daikichidaze
0
290
『しっかり学ぶ数理最適化』第1章 数理最適化入門 - 学習まとめ資料 -
daikichidaze
0
360
CoLabのススメ
daikichidaze
0
87
ユーザ検索プロジェクト勉強会 GCPの部-1
daikichidaze
0
160
slackネットワーク分析
daikichidaze
0
630
エンジニア職→非エンジニア職に転職して気づいた変化
daikichidaze
0
230
Other Decks in Business
See All in Business
CSRレポート2025_ギークス株式会社
geechs
PRO
0
340
なぜConfluence Cloudだったのか?〜『運用効率と将来性』から見る最適解と、予期せぬ課題を乗り越えた移行のリアル~ / Why-we-choose-confluence-cloud
medley
0
120
地方中小企業のエンジニアから大企業の執行役員になるまで #phpcon_niigata / road to executive
kyonmm
PRO
7
14k
REVISIO 会社説明
revisio
0
210
c-slide_会社紹介資料テンプレート
coneinc
0
770
消防設備について:2720 JAPAN O.K. ロータリーEクラブ ・(有)タナカ消防設備 専務取締役 田中 省吾 会員
2720japanoke
0
720
アジャイル開発組織における KA法実践の意義
hynym
PRO
0
120
タケウチグループRecruit
takeuchigroup
0
6.5k
Valley of Flowers: Rare Flora, Fauna & Alpine Beauty
pragyakukreti1
0
180
01_全社_FLUX採用ピッチ資料_Ver.5.1
flux
PRO
5
160k
フルカイテン株式会社 採用資料
fullkaiten
0
65k
【Progmat】Monthly-ST-Market-Report-2025-May.
progmat
0
470
Featured
See All Featured
Scaling GitHub
holman
459
140k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
43
2.4k
The Cult of Friendly URLs
andyhume
79
6.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Done Done
chrislema
184
16k
Producing Creativity
orderedlist
PRO
346
40k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Balancing Empowerment & Direction
lara
1
300
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Transcript
サンカクパートナー AI/DX勉強会 2021年9月9日 吉岡 拓真
1 自己紹介 吉岡 拓真 i タイ王国/バンコク在住:2S i 豊田通商システムズ(タイ9 i 新規事業企'
i 現地採` i サンカクパートナH i 参加:2021年6月 i プランニング経験なし https://www.facebook.com/daikichi.daze @daikichidaze
2 Background 副業:データサイエンススクール補助 好きなこと:料理・お酒・観る将 宇宙化学/隕石分析 オペレーションズ・リサーチ 数理最適化 新規事業開発
3 本日のテーマ AI/DX勉強会 テクノロジーをどうやって事業企画に活かす?
4 本日の流れ 前半:(1) AIの基礎 (2) 普及への課題 後半:グループワーク
5 本日のゴール エンジニアではなくとも「道具」として 事ができることを理解する 道具のインプットとアウトプットの関係を 理解し、 ことを目指す AIを使いこなす テクノロジーと共存する
6 テクノロジーとの共存 2020年7月16日 藤井新棋聖コメント 「AIとの向き合い方」という質問に対する回答 “数年前にはそういう(将棋)ソフトとの対局は 大きな話題になりましたが、 と思う。プレーヤーとしてはソフト を活用することで自分自身が成長できる可能性があ る。見ていただく方にも観戦の際の楽しみの一つに してもらえたらと思う。今の時代においても、将棋
界の盤上の だし、自分としてもそ ういう価値を伝えていけたらと思う” 今は対決を超えた共存 の時代に入った 物語の価値は不変 https://www.yomiuri.co.jp/igoshougi/20200716-OYT1T50303/ https://www.chunichi.co.jp/article_photo_chuspo/list?article_id=90048&pid=175692
ur 技術的な話は5%くらいしか取り上げません。 (スライド2枚分x Cr 本勉強会の内容は、曖昧な内容をなるべくわかりやすく解 説するため、吉岡個人の意見・解釈を多分に含んでいま す。そのため一部厳密性に欠ける部分があるかもしれませ ん。予めご了承ください。 7 留意事項
8 本日の流れ 前半:(1) AIの基礎 (2) 普及への課題 後半:グループワーク
9 “AI”とは? 人工知能:Artificial Intelligence “人間の知的能力をコンピュータ上で実現する、 様々な技術・ソフトウェア・コンピュータシステム” 強いAI/汎用型AI 弱いAI/特化型AI https://www.tv-asahi.co.jp/
10 ビジネス適応におけるAIの3つの構成要素 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類
11 1. AIの技術要素 『AI白書2020』図3-2-1より引用・加筆 6 組み合わせ最適P 6 動的計画A 6 ネットワークアルゴリズS
6 等々 構成要素
12 1. AIの技術要素 実現できること ① 予測(回帰・分類) ② クラスタリング ③ 最適化・実行
Wikipedia 『見て試してわかる機械学習アルゴリズムの仕組み機械学習図鑑』
13 2. AIの適応対象・データの種類 閲覧/行動履歴 購入履歴 画像 センサー 映像 映像 音声
株価 位置情報 ネットワーク
14 3. 適応領域・ビジネスドメイン ① 産業業界 ② ビジネスプロセス/ バリューチェーン https://digmee.jp/ https://www.persol-group.co.jp/service/business/article/59.html
15 [再掲]ビジネス適応におけるAIの3つの構成要素 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類
16 本日の流れ 前半:(1) AIの基礎 後半:グループワーク (2) 普及への課題
17 AI/DX普及への課題 PwC Japan『2021年AI予測(日本)』
18 AI/DX普及への課題 PwC Japan『2021年AI予測(日本)』 社員のAI利活用の推進スキル ✓ プログラミング・数学能力だけではない 「AIの挙動を理解して使いこなす力」
19 AIへの理解を阻害するものとは? 「AIで〇〇を実現」
19 AIへの理解を阻害するものとは? 「AIで〇〇を実現」 構成要素に関する情報が不十# " 技術要E " 適応対0 " 適応領域
具体的に、どのように実現したのか 理解しにくい=参考にしにくい
20 インプットとアウトプットを 理解する 「弱いAI」の特徴を掴む https://www.tv-asahi.co.jp/doraemon/tool/sa.html
21 弱いAIを使いこなす 1. 課題分析 2. ソリューション設計 3. ツール選定 4. 適応→解決
22 まとめ 「弱いAI」の特徴を理解し使いこなすことで、導入/普及を促進 3つの構成要素に分けて理7 Y 技術要素 インプットとアウトプットの関係を理7 Y 適応対Æ Y 適応領域
23 本日の流れ 前半:(1) AIの基礎 (2) 普及への課題 後半:グループワーク
24 グループワーク 事例分析 身近なサービス/ビジネスはどう活用してる?
25 フードデリバリーサービスの例 1. 需要予測 2. マッチング 3. ルート検索 4. 不正ユーザ検知
AIが利用されていそうなシーン
26 フードデリバリーサービスの例 1. 需要予測 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類 予測(回帰)
インターネットサービス フードデリバリー業界 過去の購買ログ/ 時系列データ/地図 未来の注文発生 需要を予測 i 配達員の最適配k i ダイナミックプライシング
27 フードデリバリーサービスの例 2. マッチング 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類 最適化
インターネットサービス フードデリバリー業界 ユーザ×ドライバー× レストランの組み合わせ 膨大な組み合わせから 最適な配車を実現 x フードデリバリu x ライドヘアリング(配車)
28 フードデリバリーサービスの例 3. ルート検索 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類 最適化
インターネットサービス フードデリバリー業界 道路ネットワーク・ 地図 膨大なルート候補から 最短・最適ルートを探索 ナビ機能
29 フードデリバリーサービスの例 4. 不正ユーザ検知 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類 インターネットサービス
フードデリバリー業界 ユーザ利用データ 過去の不正ユーザデータ から推定した予測 不正ユーザ検知 予測(分類)
30 事例分析から見えること P 1つのサービスの中でも様々な方法で活用されていT P 3つの要素に分解することで、活用方法を理解しやすくすT P すべてがAI(機械学習)とは限らない 活用方法を理解することで、 他のビジネスへも応用できる
31 グループワーク 事例分析 身近なサービスを分析してみよう
32 身近なサービスから、 どのようにAIを活用していそうか分析する 分析対象事例の例
33 [事例分析のフレームワーク] 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類 予測/クラスタリング/ 最適化・実行 実現できる機能
活用事例
34 グループワークの進め方 y 1部屋あたり4名程度のブレークアウトルームに別れて頂きまx y グループの中で、分析してみたい事例を相談し、実際に事例分析を行って みてください(20分V iy 各部屋ごとにワークシート(Googleスライド)を配布しまx 2y
分析する事例は基本的には1つ。もしチームに余裕があれば複数でも もちろんO" !y サンプル例に上げているサービスでも良いし、それ以外でも何でもO" y 各チームごとに分析結果を発表(1チーム最大5分)
35 ワークショップ(応用編) 活用アイディア 自分の業務に活用するとしたら?
36 [事例分析のフレームワーク] 技術要素 適応領域 ビジネスドメイン 適応対象 テータの種類 予測/クラスタリング/ 最適化・実行 実現できる機能
活用事例