正準⽅程式
ɽ࠷
Δ
ఆ
͏
ߘ
Β
ଓ
dt dt ∂p dt ∂q
ͱ͢Εɼࣜ (3) ΑΓӡಈ
ιXC0
(d˜
Ξ) = 0
Λຬͨ͢ɽ∂ ˜
H/∂u = 0 ͷղ u∗(p, q
ೖ͠ɼϋϛϧτχΞϯΛ
ਂ थ
1DeepFlow גࣜձࣾ
e-mail : hiroki.fukagawa@deepflow.co.jp
֓ཁ
ݪཧɼ
ʮӡಈ͕ඳ͘ۂઢ൚ؔʹఀཹ
༩͑Δʯͱ͍͏ܗͰӡಈ๏ଇΛ༩͑Δɽ࠷
ɼ͜ΕΛඍܗࣜΛͬͯදݱ͢Δɽ͋Δ
ྔͷΛಉ࣌ࠁͷଞͷཧྔͷ͚ͩͰఆ
߆ଋ݅ΛϗϩϊϛοΫ߆ଋͱݺͼɼͦ͏
͍ͷΛඇϗϩϊϛοΫ߆ଋͱݺͿɽຊߘ
ɼඇϗϩϊϛοΫ߆ଋͰඍܗࣜͰ༩͑Β
ܥͷӡಈΛඍܗࣜͰఆࣜԽ͠ [1]ɼ࿈ଓ
ͷ֦ுΛࣔ͢ [2, 3, 4]ɽ
ਖ਼४ํఔࣜͷಋग़
ΛಘΔɽӡಈۂઢ C0
ͷϕΫτϧΛ
XC0
:=
dC0
dt
=
dp
dt
∂
∂p
+
dq
dt
∂
∂q
+
du
dt
∂
∂u
+
ͱ͢Εɼࣜ (3) ΑΓӡಈ
ιXC0
(d˜
Ξ) = 0
Λຬͨ͢ɽ∂ ˜
H/∂u = 0 ͷղ u∗(p, q) Λࣜ (
ೖ͠ɼϋϛϧτχΞϯΛ
H(p, q) := ˜
H(p, q, u∗(p, q))
ϩϊϛοΫ߆ଋͱݺͼɼͦ͏
ϩϊϛοΫ߆ଋͱݺͿɽຊߘ
οΫ߆ଋͰඍܗࣜͰ༩͑Β
ඍܗࣜͰఆࣜԽ͠ [1]ɼ࿈ଓ
[2, 3, 4]ɽ
ͷಋग़
ӡಈΛߟ͑Δɽ࣭ͷ࣌ࠁ t
Ґஔ q ͱ u Ͱ༩͑ΒΕΔɽ
ɼdq/dt = u ΑΓ u Ͱ
ۭؒͰӡಈۂઢ C0
(dq − udt) = 0 (1)
ιXC0
(d˜
Ξ) = 0
Λຬͨ͢ɽ∂ ˜
H/∂u = 0 ͷղ u∗(p, q) Λࣜ
ೖ͠ɼϋϛϧτχΞϯΛ
H(p, q) := ˜
H(p, q, u∗(p, q))
ͱ͢ΕɼӡಈํఔࣜͰ͋Δਖ਼४ํఔ
dq
dt
=
∂H
∂p
,
dp
dt
= −
∂H
∂q
͕ಘΒΕΔɽ
࣭ͷ u ͕Ґஔ q ͷ࣌ؒൃలΛܾ
t
p, q, u
𝐶!
ͯ͠ɼετʔΫεͷఆཧΑΓ࣍ΛಘΔɽ
0 = lim
α→0
1
α ∂Sα
˜
Ξ = lim
α→0
1
α Sα
d˜
Ξ (3)
∂Sα
ͱ Sα
ɼ(p, q, u, t) ্ۭؒͷ͖͖ͷด
ۂઢͱͦΕʹғ·Εͨ໘ੵͰ͋ΔɽϓϨϋϛϧ
τχΞϯΛ
˜
H(p, q, u) := pu − L(q, u) (4)
ͱ͢Εɼ˜
Ξ = pdq − ˜
Hdt ͱͳΓɼ
d˜
Ξ = dp ∧ dq − d ˜
H ∧ dt
= dp +
∂ ˜
H
∂q
dt ∧ dq −
∂ ˜
H
∂p
dt
−
∂ ˜
H
∂u
du ∧ dt (5)
3 ߆ଋܥͷӡಈ๏ଇ
ϥάϥϯδΞϯ L Λ (q, u, s) ͷؔͱ͠ɼ
ଶྔ s ͕ଞͷঢ়ଶྔͷؔ W(q, t) ͱͳΔͱ
0 = U(s, q, t) := s − W(q, t) (
ͱͳΓɼ͜ΕΛϗϩϊϛοΫ߆ଋ݅ͱݺ
ະఆ T ʹର͠ɼ ͕࣍ຬͨ͞ΕΔɽ
0= lim
α→0
1
α ∂Sα
TUdt = lim
α→0
1
α Sα
d(TUdt) (
ࣜ (11) Λߟྀ͢Εɼd(TUdt) = TdU ∧d
ͳΔɽ͜͜Ͱඍ 1 ܗࣜ β Λಋೖ͢Δɽ
β := Tds + fdq + Qdt (
ຊԠ༻ཧֶձ 2021 ձ ߨԋ༧ߘू (2021.9.7–9) Copyright (C) 2021 Ұൠࣾஂ๏ਓຊԠ༻ཧֶձ
0 = lim
α→0
1
α ∂Sα
˜
Ξ = lim
α→0
1
α Sα
d˜
Ξ (3)
Sα
ͱ Sα
ɼ(p, q, u, t) ্ۭؒͷ͖͖ͷด
ઢͱͦΕʹғ·Εͨ໘ੵͰ͋ΔɽϓϨϋϛϧ
χΞϯΛ
˜
H(p, q, u) := pu − L(q, u) (4)
͢Εɼ˜
Ξ = pdq − ˜
Hdt ͱͳΓɼ
d˜
Ξ = dp ∧ dq − d ˜
H ∧ dt
3
ϥ
ଶྔ
ͱͳ
ະఆ
0=
= 0
where
flow.co.jp
ؔʹఀཹ
༩͑Δɽ࠷
͢Δɽ͋Δ
͚ͩͰఆ
ݺͼɼͦ͏
ݺͿɽຊߘ
ࣜͰ༩͑Β
͠ [1]ɼ࿈ଓ
ͷ࣌ࠁ t
༩͑ΒΕΔɽ
Γ u Ͱ
ΛಘΔɽӡಈۂઢ C0
ͷϕΫτϧΛ
XC0
:=
dC0
dt
=
dp
dt
∂
∂p
+
dq
dt
∂
∂q
+
du
dt
∂
∂u
+
∂
∂t
(6)
ͱ͢Εɼࣜ (3) ΑΓӡಈ
ιXC0
(d˜
Ξ) = 0 (7)
Λຬͨ͢ɽ∂ ˜
H/∂u = 0 ͷղ u∗(p, q) Λࣜ (4) ʹ
ೖ͠ɼϋϛϧτχΞϯΛ
H(p, q) := ˜
H(p, q, u∗(p, q)) (8)
ͱ͢ΕɼӡಈํఔࣜͰ͋Δਖ਼४ํఔࣜ
dq
dt
=
∂H
∂p
,
dp
dt
= −
∂H
∂q
(9)
正準⽅程式
Εɼҙͷඍ n ܗࣜʹͭ
ɽ
ͭͰ͋Δϋϛϧτϯͷݪཧ 1)
ද͠ɼ࠷ద੍ޚཧͷ؍͔Β
ରশੑͱอଘଇͷؔΛࣔ͢ɽ
ҳܥͷ֦ுΛߦ͏ɽ
Ґஔ q ͱ u Ͱ༩͑ΒΕΔɽ
/dt = u ΑΓ u Ͱఆ·Γɼ
ͱ͢Δɽͳ͓ɼδ ඍখྔΛද͢ه߸
༻͍ͯɼ͖Λߟྀͨ͠໘ੵΛ Sα =
ɼࣜ (9) ΑΓ ιY α
[ιXC0
(d˜
Ξ)] = 0 Λ
ҙͳͷͰɼ
ιXC0
(d˜
Ξ) = 0
ͱͳΓɼࣜ (11) ΑΓɼ
dq
dt
=
∂ ˜
H
∂p
,
dp
dt
= −
∂ ˜
H
∂q
,
∂ ˜
H
∂u
= 0
˜ ∗
:= lim
α→0
1
α
fi(qj + αXj)d(qi + αXi) − fi(qj)dqi
= X(fi)dqi + fidXi (4)
ͰఆΊΔɽҰํͰɼ
(dιX + ιX d)(fidqi)
= d(ιX (fidqi)) + ιX (dfi
∧ dqi)
= d(Xifi) + X(fi)dqi − Xidfi
= X(fi)dqi + fidXi (5)
ͳΓɼඍ 1 ܗࣜʹରͯ͠ LX = dιX + ιX d ͱͳΔɽ
͜Ε Cartan ͷެࣜͱݺΕɼҙͷඍ n ܗࣜʹͭ
͍ͯಉ༷ʹΓཱͭ 2,3)ɽ
3 มݪཧ
ྗֶͰͷมݪཧͷҰͭͰ͋Δϋϛϧτϯͷݪཧ 1)
ͷඞཁ݅ΛඍܗࣜͰද͠ɼ࠷ద੍ޚཧͷ؍͔Β
ߋʹҰൠԽ͢Δɽ࣍ʹɼରশੑͱอଘଇͷؔΛࣔ͢ɽ
࠷ޙʹɼ߆ଋܥ͓Αͼࢄҳܥͷ֦ுΛߦ͏ɽ
3.1 ϋϛϧτϯͷݪཧ
࣌ࠁ t ͷ࣭ͷঢ়ଶҐஔ q ͱ u Ͱ༩͑ΒΕΔɽ
Ґஔ q ͷ࣌ؒൃలɼdq/dt = u ΑΓ u Ͱఆ·Γɼ
(q, u, t) ۭؒͰӡಈۂઢ C0
C0
(dq − udt) = 0 (6)
Λຬͨ͢ɽϋϛϧτϯͷݪཧʹΑΔͱɼۂઢ C0
ϥά
ϥϯδΞϯ L(q, u) ͷ࣌ؒੵʹఀཹΛ༩͑Δɽα Λ
= dp +
∂ ˜
H
∂q
dt ∧ dq −
∂ ˜
H
∂p
dt
−
∂ ˜
H
∂u
du ∧ dt (
ΛಘΔɽӡಈۂઢ C0
ͷϕΫτϧΛ
XC0
:=
dC0
dt
=
dp
dt
∂
∂p
+
dq
dt
∂
∂q
+
du
dt
∂
∂u
+
∂
∂t
(
ͱ͠ɼมΛ༩͑ΔϕΫτϧΛ
Yα := δpα
∂
∂p
+ δqα
∂
∂q
+ δuα
∂
∂u
+ δtα
∂
∂t
(
ͱ͢Δɽͳ͓ɼδ ඍখྔΛද͢ه߸Ͱ͋Δɽ֎ੵ ×
༻͍ͯɼ͖Λߟྀͨ͠໘ੵΛ Sα = XC0
×Y α
ͱ͢
ɼࣜ (9) ΑΓ ιY α
[ιXC0
(d˜
Ξ)] = 0 ΛಘΔɽ͜͜Ͱ Y
ҙͳͷͰɼ
ιXC0
(d˜
Ξ) = 0 (
ͱͳΓɼࣜ (11) ΑΓɼ
dq
dt
=
∂ ˜
H
∂p
,
dp
dt
= −
∂ ˜
H
∂q
,
∂ ˜
H
∂u
= 0 (
ΛಘΔɽ∂ ˜
H/∂u = 0 ͷղ u∗(p, q) Λࣜ (10) ʹೖ
ϋϛϧτχΞϯΛ H(p, q) := ˜
H(p, q, u∗(p, q)) ͱ͢Ε
ӡಈํఔࣜͰ͋Δਖ਼४ํఔࣜ
dq
dt
=
∂H
∂p
,
dp
dt
= −
∂H
∂q
(
͕ಘΒΕΔɽ 24
DeepFlow, Inc.