(2πωm t)) −A sin (2πωc t) sin (B sin (2πωm t)) cos (z sin θ) = J0 (z) + 2 ∞ ∑ k=1 J2k (z) cos (2kθ) sin (z sin θ) = 2 ∞ ∑ k=0 J2k+1 (z) sin ((2k + 1) θ) Olver, Frank W. NIST handbook of mathematical functions. Cambridge New York: Cambridge University Press NIST, 2010. p.226
∑ k=1 J2k (z) cos (2kθ) sin (z sin θ) = 2 ∞ ∑ k=0 J2k+1 (z) sin ((2k + 1) θ) Olver, Frank W. NIST handbook of mathematical functions. Cambridge New York: Cambridge University Press NIST, 2010. p.226 f (t) = A cos (2πωc t) ( J0 (B) + 2 ∞ ∑ k=1 J2k (B) cos (2k (2πωm t))) −A sin (2πωc t) ( 2 ∞ ∑ k=0 J2k+1 (B) sin ((2k + 1) (2πωm t)))
b) + cos (a + b)) sin a sin b = 1 2 (cos (a + b) − cos (a − b)) ࡾ֯ؔͷੵެࣜ f (t) = AJ0 (B) cos (2πωc t) +2A ∞ ∑ k=1 J2k (B) cos (2k (2πωm t)) cos (2πωc t) −2A ∞ ∑ k=0 J2k+1 (B) sin ((2k + 1) (2πωm t)) sin (2πωc t)
The Faster Methods for Computing Bessel Functions of the First Kind of an Integer Order with Application to Graphic Processors Jn (x) = 2 (n − 1) x Jn−1 (x) − Jn−2 (x) ͜ͷۙࣅͷDPPMͳͱ͜Ζ ͭԼͷ࣍ ͱ ͭԼͷ࣍ ͕طͷ߹ ͷ͘͢͝؆୯ͳܭࢉͰ ͕ٻ·Δ Jn−1 (x) Jn−2 (x) Jn (x) Լͷ͔࣍Βܭࢉ͢ΔͱരͰϕοηϧؔͷ͕ٻ·Δ ∴
(n)) m − n t + nf (m) − mf (n) n − m fconst (t, n, m) = nf (m) − mf (n) n − m ferror (n, m, l) = ∫ n 0 flinear (t,0,n) − f (t) dt + ∫ m n flinear (t, n, m) − f (t) dt + ∫ l m fconst (t, m, l) − f (t) dt ͱ ʹ͍ͭͯͷޯΛٻΊ Λमਖ਼͍͚ͯ͠ྑ͍ n m ݮਰৼಈ͢Δָثͷ߹ Λ ʹ Λαϯϓϧݻఆ͢Δ fconst 0 l