Upgrade to Pro — share decks privately, control downloads, hide ads and more …

QGP parameter extraction via a global analysis ...

QGP parameter extraction via a global analysis of event-by-event flow coefficient distributions

Prelim exam talk at Duke.

Avatar for Jonah Bernhard

Jonah Bernhard

January 06, 2014
Tweet

More Decks by Jonah Bernhard

Other Decks in Science

Transcript

  1. QGP parameter extraction via a global analysis of event-by-event flow

    coefficient distributions Jonah Bernhard Preliminary exam January 6, 2014
  2. Model-to-data comparison: heavy-ion collisions Model Initial conditions, τ0, η/s, .

    . . 0.00 0.05 0.10 0.15 0.20 v2 0 5 10 15 20 P(v2 ) thick black line = ATLAS thin colored lines = model glb v2 20 25% 2 / 29
  3. Hot QCD matter Normal matter Quarks and gluons confined to

    hadrons. Bound by strong nuclear force. Described by Quantum Chromodynamics (QCD). Quark-gluon plasma QCD crossover transition T ∼ 165 MeV ∼ 1012 K. Deconfined quarks and gluons. Hot and dense, short mean free path (fluid-like). 3 / 29
  4. Relativistic heavy-ion collisions Postulated that the universe was one large

    QGP in the first microseconds after the Big Bang. Small amounts created in relativistic heavy-ion collisions. RHIC / BNL Au+Au, Cu+Cu, U+U √ s ≤ 200 GeV LHC / CERN Pb+Pb √ s = 2.76 TeV 4 / 29
  5. Spacetime evolution x ∼ 10−14 m t ∼ 10−23 s

    z t Hot and dense QGP, Hydrodynamic expansion Pre-equilibrium Thermalization Freeze-out Hadron gas Proper time 5 / 29
  6. Collective behavior Strongly-interacting fluids exhibit collective behavior dP/dx dP/dy p

    x p y b Pressure gradient → fluid flow: ( + P) ∂v ∂t = −∇P K. O’Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas, Science 298, 2179 (2002). Initial-state spatial anisotropy =⇒ Final-state momentum anisotropy 6 / 29
  7. Flow Momentum anisotropy parameterized by Fourier coefficients vn dN dφ

    ∝ 1 + n vn cos[n(φ − ψn)] φ: Angle of transverse momentum ψn : Reaction-plane angle (phase) n = 2 n = 3 n = 4 Flow provides essential evidence for the existence of a strongly-interacting QCD phase. 7 / 29
  8. Event-by-event fluctuations Average: symmetric nuclei, almond-shape overlap. Large v2 ,

    small v4 , v6 , . . ., vanishing v3 , v5 , . . . Event-by-event: randomly distributed nucleons, irregular overlap. All vn nonzero. Flow probability distributions P(vn ). Average peripheral Fluctuating peripheral Fluctuating central 8 / 29
  9. Viscosity Shear viscosity η = fluid’s resistance to shear flow.

    Strongly-interacting fluid → short mean free path → small η Viscosity damps collective behavior (flow). Shear stress τ x y τ = η ∂vx ∂y η ∼ nmvavg mf ∼ mf /vavg ∼ tmf 9 / 29
  10. QGP specific shear viscosity Specific shear viscosity = dimensionless ratio

    to entropy density, η/s. η ∼ tmf , s ∼ n =⇒ η/s ∼ ( /n)tmf 1 Water η/s ∼ 300 at STP, Helium η/s ∼ 2 at 3 K, QGP η/s ∼ O(10−1). small η/s large v2 large η/s small v2 Measuring QGP η/s: Observe experimental vn. Run model with variable η/s. Constrain η/s by matching vn. 10 / 29
  11. Simulations Modern event-by-event model: Monte Carlo initial conditions (Pre-equilibrium) Viscous

    relativistic hydrodynamics Monte Carlo freeze-out Boltzmann transport 11 / 29
  12. Initial conditions MC-Glauber model Randomly samples nucleon positions. Calculates energy

    density based on nucleon overlap. MC-KLN model Randomly samples nucleon positions. Uses effective field theory to calculate gluon densities → proportional to energy density. Many others. Pb+Pb, b = 8 fm 10 5 0 5 10 x [fm] 10 5 0 5 10 y [fm] 12 / 29
  13. Viscous relativistic hydrodynamics Ignore pre-equilibrium, expand medium without interactions. Start

    hydro evolution at time τ0 (must set explicitly). Conservation equations: ∂µTµν = 0, Tµν = ( + P)uµuν − Pgµν + πµν. πµν contains dissipative effects (viscosity). Equation of state P = P( ). Initial condition Hydro η/s = 0.04 Hydro η/s = 0.24 10 5 0 5 10 x [fm] 10 5 0 5 10 y [fm] 10 5 0 5 10 x [fm] 10 5 0 5 10 x [fm] 40 80 120 160 Temperature [MeV] 13 / 29
  14. Hadronic freeze-out Hydro stops at QCD transition, T ∼ 165

    MeV. Freezes into hadrons on hypersurface σ according to Cooper-Frye formula E dNi d3p = σ fi (x, p) pµ d3σµ Randomly sample to produce an ensemble of particles. 14 / 29
  15. Transport Non-equilibrium Boltzmann transport dfi (x, p) dt = Ci

    (x, p) Calculates final collisions and decays. Particles stream into “detector”. 15 / 29
  16. Model-to-data comparison: heavy-ion collisions Model Initial conditions, τ0, η/s, .

    . . 0.00 0.05 0.10 0.15 0.20 v2 0 5 10 15 20 P(v2 ) thick black line = ATLAS thin colored lines = model glb v2 20 25% 16 / 29
  17. Computer experiments with slow models Challenges Event-by-event models very computationally

    expensive, ∼1 hour per event. Need O(103) events per parameter-point to study fluctuations. Must vary all parameters simultaneously. Strategies Evaluate model at efficient pre-determined parameter points. Latin-hypercube sampling. Interpolate between explicitly calculated points. Gaussian process emulator. 17 / 29
  18. Latin-hypercube sampling Random set of parameter points. Optimally fills parameter

    space. Avoids clusters. 0.00 0.25 0.50 0.75 1.00 x 0.25 0.50 0.75 1.00 y 4 points 0.25 0.50 0.75 1.00 x 40 points 18 / 29
  19. Gaussian processes A Gaussian process is a collection of random

    variables, any finite number of which have a joint Gaussian distribution. Instead of drawing variables from a distribution, functions are drawn from a process. Require a covariance function, e.g. cov(x1 , x2) ∝ exp − (x1 − x2)2 2 2 Nearby points correlated, distant points independent. Gaussian Processes for Machine Learning, Rasmussen and Williams, 2006. 19 / 29
  20. Gaussian process emulators Prior: the model is a Gaussian process.

    Posterior: Gaussian process conditioned on model outputs. Training Prior Posterior Emulator is a fast surrogate to the actual model. More certain near calculated points. Less certain in gaps. 20 / 29
  21. Experimental data ATLAS event-by-event flow distributions v2 , v3 ,

    v4. Fit to Rice / Bessel-Gaussian distribution P(vn) = vn δ2 vn e −(vn)2+(vRP n )2 2δ2 vn I0 vRP n vn δ2 vn Reduce to parameters vRP n , δvn . ATLAS Collaboration, JHEP 1311, 183 (2013). 21 / 29
  22. Event-by-event model Modern version of Duke+OSU model VISHNU (Viscous Hydro

    and UrQMD): MC-Glauber & MC-KLN initial conditions H.-J. Drescher and Y. Nara, Phys. Rev. C 74, 044905 (2006). Viscous hydro H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008). Cooper-Frye sampler Z. Qiu and C. Shen, arXiv:1308.2182 [nucl-th]. UrQMD (Ultrarelativistic Quantum Molecular Dynamics) S. Bass et. al., Prog. Part. Nucl. Phys. 41, 255 (1998). M. Bleicher et. al., J. Phys. G 25, 1859 (1999). → Tailored for running many events on Open Science Grid. 22 / 29
  23. Computer experiment design Six centrality bins 0–5%, 10–15%, . .

    . 50–55%. 256 Latin-hypercube points, five input parameters: Normalization IC-specific parameter Thermalization time τ0 Viscosity η/s Shear relaxation time τΠ Massive parallelization on Open Science Grid. Completed 1000–2000 events per centrality bin and input-parameter point. 3.5 million total 0.5 µb−1 (ATLAS: 7 µb−1) 23 / 29
  24. Open Science Grid usage CPU hours per day 250,000 red

    = Me Completed KLN design (1.5 million events) in two weeks. 24 / 29
  25. Model flow distributions 0 5 10 15 20 25 30

    35 P(v2 ) Glauber v2 00 05% thick black line = ATLAS thin colored lines = model KLN v2 00 05% 0.00 0.05 0.10 0.15 0.20 0.25 v2 0 2 4 6 8 10 12 14 16 P(v2 ) Glauber v2 40 45% 0.00 0.05 0.10 0.15 0.20 0.25 v2 KLN v2 40 45% 25 / 29
  26. Input-output summary 0.04 0.08 vRP 2 0.015 0.030 v2 0.04

    0.08 v2 0.015 0.030 v2 25 50 Normalization 0.3 0.4 v2 / v2 0.1 0.2 0.3 0.4 0.8 0 0.0 0.2 /s 0.4 0.8 Glauber v2 20 25% model trend ATLAS 26 / 29
  27. Input-output summary 0.09 0.12 vRP 2 0.024 0.032 v2 0.09

    0.12 v2 0.024 0.032 v2 8 12 Normalization 0.25 0.30 v2 / v2 0.16 0.24 0.4 0.8 0 0.0 0.2 /s 0.4 0.8 KLN v2 20 25% model trend ATLAS 26 / 29
  28. Best parameter points Best Latin-hypercube points by average vn 0.00

    0.02 0.04 0.06 0.08 0.10 0.12 0.14 vn Glauber /s=0.03 ATLAS v2 v3 v4 00-05 05-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 Centrality 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 vn KLN /s=0.21 OSU results, same model dashed: Glauber η/s = 0.08 solid: KLN η/s = 0.20 0 10 20 30 40 50 60 70 0 0.02 0.04 0.06 0.08 0.1 0.12 Centrality (%) vn ALICE v2 {2} ALICE v2 {4} ALICE v3 {2} ALICE v3 {4} MC-KLN MC-Glb. v2 v3 Z. Qiu, C. Shen, and U. Heinz, Phys. Lett. B 707, 151 (2012). 27 / 29
  29. Constraining η/s Points: average η/s of best 10 Latin-hypercube points

    by average vn Error bars: standard deviation of best 10 Dashed lines: canonical η/s (Glauber 0.08, KLN 0.20) 00-05 05-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 Centrality 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Preferred /s Glauber v2 v3 v4 00-05 05-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 Centrality KLN 28 / 29
  30. Summary & outlook Framework for massive event-by-event model-to-data comparison: new

    level of knowledge-extraction capability. Preliminary results consistent with previous work. Improve goodness of fit: beyond average flow. Emulator: vary single parameters independently, determine best-fit parameter values. Calibrate simultaneously on other observables, e.g. multiplicity. Repeat with more advanced models, especially initial conditions. 29 / 29
  31. Color glass condensate High energy / small x: parton distribution

    functions dominated by gluons. Gluons overlap coherently → condensate state. x = pT e±y / √ s 1 / 8
  32. Viscous hydro Conservation of energy and momentum: ∂µTµν = 0

    Stress-energy tensor: Tµν = Tµν ideal + πµν Ideal part: Tµν ideal = ( + P)uµuν − Pgµν Shear viscosity correction: πµν = η∇ µuν Symmetric and traceless: ∇ µuν = ∇µuν + ∇νuµ − 2 3 ∆µν∇αuα Projection orthogonal to four velocity: ∆µν = gµν − uµuν ∇µ = ∆α µ ∂α 2 / 8
  33. Generating Gaussian processes Choose a set of input points X∗.

    Choose a covariance function, e.g. k(xi , xj ) = exp[−(xi − xj )2/2] and create covariance matrix K(X∗ , X∗). Generate MVN samples (GPs) f∗ ∼ N[0, K(X∗ , X∗)]. 3 / 8
  34. Training the emulator Make observations f at training points X.

    Generate conditioned GPs f∗ |X∗ , X, f ∼ N[K(X∗ , X)K(X, X)−1f , K(X∗ , X∗) − K(X∗ , X)K(X, X)−1K(X, X∗)]. Prior Posterior 4 / 8
  35. Rice / Bessel-Gaussian distribution Flow vectors follow bivariate Gaussian P(vn)

    = 1 2πδ2 vn e −(vn−vRP n )2 2δ2 vn . Integrate out angle P(vn) = vn δ2 vn e −(vn)2+(vRP n )2 2δ2 vn I0 vRP n vn δ2 vn . obs 2,x v -0.2 0 0.2 obs 2,y v -0.2 0 0.2 0 500 1000 centrality: 20-25% ATLAS Pb+Pb =2.76 TeV NN s -1 b µ = 7 int L |<2.5 η >0.5 GeV,| T p obs 2 v 0 0.1 0.2 0.3 Events 1 10 2 10 3 10 4 10 |<2.5 η >0.5 GeV,| T p ATLAS Pb+Pb =2.76 TeV NN s -1 b µ = 7 int L centrality: 20-25% 5 / 8
  36. Finite multiplicity and unfolding Observed flow smeared by finite multiplicity

    and nonflow P(vobs n ) = P(vobs n |vn)P(vn) dvn where P(vobs n |vn) is the response function. Pure statistical smearing → Gaussian response P(vobs n |vn) = vobs n δ2 vn e −(vobs n )2+(vn)2 2δ2 vn I0 vnvobs n δ2 vn . vRP n unaffected; width increased as δ2 vn → δ2 vn + 1/2M. 6 / 8
  37. Likelihood Given experimental observations yi with errors σi and model

    predictions θi , what is the likelihood that the model describes reality? L ∼ exp − i (yi − θi )2 2σ2 i Or as a null hypothesis: can the model be rejected based on comparison to the data? (e.g. If a coin is flipped N times and yields heads each time, what is the probability that it is fair?) y σ θ 7 / 8
  38. Linear fit example 0.00 0.02 0.04 0.06 0.08 0.10 0.12

    0.001Norm + 0.130 + 0.026 0 0.062 /s + 0.020 0.00 0.02 0.04 0.06 0.08 0.10 0.12 v2 R2 ∼ 0.97 Glauber v2 20 25% 8 / 8