$30 off During Our Annual Pro Sale. View Details »

Intro to Deep Learning Class

Intro to Deep Learning Class

Introduction to Artificial Neural Networks and Deep Learning.

Deep Learning class as part of the MSc in Medical Statistics and Health Data Science, University of Bristol. Mar, 2023

Valerio Maggio

March 15, 2023
Tweet

More Decks by Valerio Maggio

Other Decks in Education

Transcript

  1. Deep Learning for the Health and Life Sciences Valerio Maggio,

    PhD @l er i o m a g g i o v ma g g i o@a n a c o n d a .c o m
  2. m e p u n Who? B a c k

    g r o un d i n C S P h D i n Ma c h i n e L ea r n i n g R e s e a r c h : M L /D L f o r B i o Me d i c i n e P y t h o n G e e k 
 D e v e l o p e r A d v o c a te _a t _ An a c o n da a l s o m e
  3. Machine Learning “M a c h i n e l

    e a r n i n g i s t h e s ci e nc e (a nd a r t) o f p r o g ra m m i n g c o m p ut e rs so th e y c a n l e a rn fr o m d a t a” A u r él ie n G ér o n , Ha n ds -o n M a c h i n e L e a r n i n g w i t h Sc i ki t-L e a r n a nd T e n s o r Fl o w S o u r ce : bi t.l y /m l -s i m p l e -d ef i ni t i o n “(m l ) fo c us e s o n t e a c h i n g c o m p ut e rs h o w t o l e a r n w i t h o u t t h e n ee d t o b e p r o g r a m m e d f o r s p ec i f i c t a sk s” S. P a l & A . G u l l i , D e e p L e a r ni n g w it h K e ra s
  4. Machine Learning M a c h i n e l

    e a r n i n g t e a c h es ma c h i n es h o w t o c a rr y o u t t a s k s b y t h e m s e l ve s. I t i s t h a t s i mp l e . T h e c o m p l e x i t y c o m e s w it h t h e d et a il s L o u i s P ed r o C o e l h o , B u i l d i ng Ma c h i n e L ea r ni n g S y s t e m s w i t h P y t h o n (a n d th a t ’s p r o b a bl y o n e o f t h e re a so n w h y y o u ’r e h e r e :)
  5. The (Machine) Learning is about DATA D a t a

    a r e o ne o f th e m o s t i m p o r t a n t p a rt o f a m l s o l u ti o n I m p o rt a n c e: Da t a >> Mo d e l ? L e a r ni n g b y e xa m p l e s D a t a P r e p a ra t i o n i s c r uc i a l ! d a t a a l g o r i t h m s
  6. BioMedicine: another data case ? C o n t e

    m p o r a ry Li f e S c i e n c e i s a b o u t d a t a r ec e nt a d v a n c e s i n s e q u e n ci n g t ec h s a nd i n s t r u m e n t s (e.g. “b io -i m a g e s ”) h u g e d a ta s e t s g e ne r a t e d a t i n c r e d i bl e p a ce f ro m h u m a n o b se r v a t i o n t o d a ta a n a l y s is c h e m o -i nf o rm a ti c s (d r u g d i sc o v e r y ) R e s e a r c h I m p a ct —> S o c ia l a n d H u m a n I mp a c t
  7. Why Deep Learning, btw? S u b s et o

    f M L w / v e r y s pe c if i c m o d e l : (D e e p?) N e u ra l N e tw o r k s S ta t e o f t h e a r t T h e o r y ’50 / ’80 h w a cc e l e r a t i o n t o tr a i n (~n ew ) l e a rn i ng st r u c t ur e + c o m po s a b i l i t y (2018/23)
  8. f e a t ur e s l a b

    e l s (r a w ) d a t a M L /D L 
 M o d e l T r a i n i n g T ra i ne d 
 M o d e l (u n s e e n ) d a t a T e s t P r e di c ti o n s Supervised learning s up e rv i si o n
  9. f e a t ur e s l a b

    e l s (r a w ) d a t a M L /D L 
 M o d e l T r a i n i n g T ra i ne d 
 M o d e l (u n s e e n ) d a t a T e s t S i m i l a r i t i e s /l i k e l i h o o d UnSupervised learning
  10. l a b e l s (r a w )

    d a t a D L 
 M o d e l T r a i n i n g T ra i ne d 
 M o d e l (u n s e e n ) d a t a T e s t P r e di c ti o n s s up e rv i si o n f e a t ur e s Deep 
 Supervised learning
  11. Neural Networks A m u l t i-l a y

    e r f e e d-f o r w a r d n e ur a l n et w o r k c o mp o se d b y m u l t i pl e 
 d en s e (a.k.a. f u l l y -c o n n ec t ed ) h i d d e n l a y e r s a nd no n-l in e a r t r a n s f o rm a t i o ns
  12. More details… S u m m a r y: 


    
 A (b a s i c ) D e e p N e u r a l N e t w o r k i s : • C o m p o s e d o f m u l t i p l e l a y e rs ; • E a c h L a y e r i s f (W x +b): • L in e a r m o d e l -> W x +b • f() is a n o n -l i n e a r f u n c t i o n G o a l o f t h e l ea r ni n g t a s k: fi n d i n g t h e va l ue s o f a l l 
 W s a n d bs (i.e. m o d e l p a r a m e te r s ) s o t h a t t h e c l a s s i f ic a ti o n e rr o r w o u l d b e m in i m u m.
  13. Supervised Learning Loop l a b e l s (r

    a w ) d a t a M o d e l P a r a m e t e r s L o s s l o s s p r e d ic t i o n s
  14. Supervised Training Loop breakdown & terminology (r a w )

    D a t a - a .k.a. O b s e r v a t i o n s / I n p u t 
 I te m s a b o u t w h i c h w e w a n t t o p r e d i c t s o m e t h i n g. W e u s u a l l y w i l l d en o te o b s e r v a t i o n w i t h x . L a b e l s - a .k.a. T a r g e t s (i.e. G r o u n d T r u t h) 
 L a b el s c o rr e s p o n d i n g t o o b s e r v a t i o n s. T h e s e a r e u s u a l l y t h e t h i n g s b e i n g p re d ic t e d . F o l l o w i n g s t a n d a r d n o t a t i o n s i n M L /D L , w e w i l l u s e y t o r e f e r t o t h e s e . M o d e l f(x) = ˆy 
 A m a th e m a t i c a e x p r e s s i o n o r a f u n c t i o n t h a t t a k e s a n o b s e r v a t i o n x a n d p re d ic t s t h e v a l u e o f i t s t a r g e t l a b e l . P r e d i c t i o n s - a .k.a. Es t i m a t e s: V a l u e s o f t h e T a r g e t s g e n e r a t e d b y t h e m o d e l - u s u a l l y r e f e r r e d t o a s ˆy P a r a m e t e r s - a .k.a. W e i g h t s (i n D L t e r m i n o l o g y ) 
 P a r a m e t e r s o f t h e M o d e l . W e w i l l r e f e r t o t h e m u s i n g t h e w. L o s s F u n c t i o n L (y, ˆy): 
 F u n c t i o n t h a t c o m p a r e s h o w f a r o f f a p r e d i c t i o n i s f ro m i t s t a r g e t f o r o bs e r v a t i o n s i n t h e t r a i n i n g d a t a . T h e l o s s f u n c t i o n a s s i g n s a s c a l a r r e a l v a l u e c a l l e d t h e l o s s . T h e l o w e r t h e v a l u e o f t h e l o s s , t h e b e t t e r t h e m o d e l i s p r e d i c t i n g. T h e L o s s i s u s u a l l y r e f e r r e d t o a s L S o u r c e :D. R a o e t a l. - N a t ur a l L a n g u a g e P r o c e s s i n g w i th Py T o r c h , O ’R e i l l y 2019
  15. Materials and Practical R e p o si t o

    r y: 
 h t tp s://g i t h ub .c o m /l er i o m a gg i o /d ee p-l ea r ni n g -c l a s s m y b i nd e r