Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論紹] DEEP CONTEXTUALIZED WORD REPRESENTATIONS
Search
onizuka laboratory
July 11, 2018
Research
0
85
[論紹] DEEP CONTEXTUALIZED WORD REPRESENTATIONS
弊研究室で行なったNAACL読み会の発表資料です。
onizuka laboratory
July 11, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.3k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
330
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
11k
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
270
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
400
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
500
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
120
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
490
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
110
Featured
See All Featured
How to Ace a Technical Interview
jacobian
280
24k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Fireside Chat
paigeccino
41
3.7k
Context Engineering - Making Every Token Count
addyosmani
9
510
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Speed Design
sergeychernyshev
33
1.4k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
A designer walks into a library…
pauljervisheath
210
24k
Building an army of robots
kneath
306
46k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Transcript
/""$-:0.*,"* UI+VMZ %&&1$0/5&956"-*;&% 803%3&13&4&/5"5*0/4 (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7 +6/:"5",":"."
1BQFS*/'0 .&1FUFST ./FVNBOO .*ZZFS .(BSEOFS $$MBSL ,-FFBOE-;FUUMFNPZFS l%FFQDPOUFYUVBMJ[FEXPSESFQSFTFOUBUJPOTz *O1SPDFFEJOHTPG/""$-)-5
#FTU1BQFS
$POUFOUT 0WFSWJFX &-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT &WBMVBUJPO "OBMZTJT
$PODMVTJPO
0WFSWJFX 1SPQPTFBOFXUZQFPGXPSESFQSFTFOUBUJPO&-.P • .PEFMTCPUIPG ØDPNQMFYDIBSBDUFSJTUJDTPGXPSEVTF FH TZOUBYBOETFNBOUJDT Ø)PXUIFTFVTFTWBSZBDSPTTMJOHVJTUJDDPOUFYUT JF UPNPEFMQPMZTFNZ
• #BTFEPOJOUFSOBMTUBUFTPGB#J-45.-BOHVBHFNPEFM • $BOCFFBTJMZUPBEEFEUPFYJTUJOHNPEFMT BOEJNQSPWFUIF405"BDSPTTNBOZUBTLT
$POUFOUT 0WFSWJFX &-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT &WBMVBUJPO "OBMZTJT
$PODMVTJPO
&-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT 8PSESFQSFTFOUBUJPOGSPN#J-45.-BOHVBHF.PEFM 1SFUSBJOFE#J-45.-BOHVBHF.PEFM TNBMM DBU -45. -45. -45.
DVUF ɾɾɾ #J-45. #J-45. #J-45. -45. -45. -45. #J-45. #J-45. #J-45. &-.P ! "# "$ "%
#JEJSFDUJPOBMMBOHVBHFNPEFMT 5SBJOCJEJSFDUJPOBM-.CBTFEPO4UBDLFE#J-45. TNBMM DBU -45. -45. -45. DVUF ɾɾɾ
#J-45. #J-45. #J-45. -45. -45. -45. #J-45. #J-45. #J-45. DBU JT FPT !"#$%$&': ) *+, - log 1 2*|2,, … , 2*6,; 89, 8:;<=, 8> + log 1(2*A,, … , 2-; 89, 8:;<=, 8>) 89: Embedding matrix 8:;<=: parameters for LSTMs 8>: parameters for Softmax Layer
&-.P 8PSE3FQSFTFOUBUJPOPGUPLFO!" JTCFMPX !" -45. GPSXBSE -45. GPSXBSE #"
= %& '(, *&,+ '(, *&,+ '(|- = 1, … , 0 = *&,+ '(|- = 0, … , 0 %& '( XPSEFNCFEEJOHT *&,+ '(PVUQVUPG KUI MBZFS LUI DFMM CBDLXBSE -45. CBDLXBSE *&,+ '( *&,+ '( %&,+ '(
&-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT 0QUJNJ[FUIFXFJHIUPGFBDIIJEEFOMBZFSGPSFBDIUBTL -45. #J-45. -45. #J-45. &-.PL UBTL
! "# "$ "% &' ()*+' ,-.' = ( 0' ; 2,-.' = !,-.' 3 456 7 "4 ,-.'89,; <= >?@>9 TPGUNBYOPSNBMJ[FE XFJHIUT !,-.' XFJHIUGPSFOUJSF &-.P WFDUPS
"QQMZJOH&-.P UPTVQFSWJTFEUBTLT $PODBU &-.P BOEUBTL`TFNCFEEJOHIJEEFOMBZFSPVUQVU &-.PL UBTL 8PSE&NCFEEJOHL &-.PL
UBTL )JEEFO MBZFS PVUQVUL 3// $//
$POUFOUT 0WFSWJFX &-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT &WBMVBUJPO "OBMZTJT
$PODMVTJPO
5SBJOJOHTFUUJOHT • /PGMBZFSTUBDLJOH MBZFST • /PGUSBJOJOHFQPDIT FQPDIT • -45. VOJUTJ[F
VOJUT • -45. EJNFOTJPO • $PSQVT #JMMJPO8PSE#FODINPSL • "QQMZJOHSFTJEVBMDPOOFDUJPOGPSGJSTUMBZFSUPTFDPOEMBZFS
&WBMVBUJPO3FTVMUT • "QQMZ&-.0UPBTJNQMFCBTFMJOFJOUBTLT 2" 35& 43- $PSFGFSFODF /&3 4FOUJNFOU
• "DIJFWFTDPSFTDPNQBSBCMFUPPSCFUUFSUIBO405"JOBMM
$POUFOUT 0WFSWJFX &-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT &WBMVBUJPO "OBMZTJT
$PODMVTJPO
8IFSFUPJODMVEF&-.P • *O43- UBTLTQFDJGJDSFQSFTFOUBUJPOJTNPSFJNQPSUBOU UIVT&-.P JOUIFPVUQVUMBZFSJTMPXFGGFDU • 'PSNPEFMTXJUIBUUFOUJPOMBZFSBGUFS3//JUJTFGGFDUJWF UPBEE&-.P
UPUIFPVUQVUPG3//
8IBU*/'0TDBQUVSFECZ&-.P • $PNQBSFEXJUI(MPWF &-.P DBOXFMMDBQUVSFDPOUFYU JOGPSNBUJPO
4BNQMFFGGJDJFODZ • 6TJOH&-.P NBLFT MFBSOJOHNPSFFGGJDJFOU UIBOFYDJTUJOH NPEFM
7JTVBMJ[BUJPOPGMFBSOFEXFJHIUT • 7JTVBMJ[BUJPOPGXFJHIUJOH PG&-.P JOFBDIFOEUBTL • *OJOQVUMBZFS GJSTU#J-45. -BZFSJTNPTUFGGFDUJWF •
*OPVUQVUMBZFS VTJOH JOGPSNBUJPOPGBMMMBZFSTPO BWFSBHF
$POUFOUT 0WFSWJFX &-.P&NCFEEJOHT GSPN-BOHVBHF.PEFMT &WBMVBUJPO "OBMZTJT
$PODMVTJPO
$PODMVTJPO 1SPQPTFEBOFXUZQFPGXPSESFQSFTFOUBUJPO&-.P • .PEFMTCPUIPG ØDPNQMFYDIBSBDUFSJTUJDTPGXPSEVTF FH TZOUBYBOETFNBOUJDT Ø)PXUIFTFVTFTWBSZBDSPTTMJOHVJTUJDDPOUFYUT JF UPNPEFMQPMZTFNZ
• #BTFEPOJOUFSOBMTUBUFTPGB#J-45.-BOHVBHFNPEFM • $BOCFFBTJMZUPBEEFEUPFYJTUJOHNPEFMT BOEJNQSPWFUIF405"BDSPTTNBOZUBTLT