Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Alexandra Lefebvre

Alexandra Lefebvre

SAM Conference 2017

July 03, 2017
Tweet

More Decks by SAM Conference 2017

Other Decks in Research

Transcript

  1. Computing competing risks based on family history in genetic diseases

    with variable age at onset Alexandra Lefebvre, Olivier Bouaziz, Gr´ egory Nuel Curie Institut - LPMA, UPMC - University Paris 11, France SAM 2017 University of Liverpool A. Lefebvre 1 / 13
  2. Introduction : Context The breast cancer 1st cancer in women.

    55,000 women in the UK each year Complex disease due to an accumulation of mutations (ie. : BRCA 1/2 and/or PALB2 and/or RAD51 and/or, etc.) 10 to 15% cases : inherited mutation. The genetic counseling 22/05/2017 11(16 Test 1 UN97 2 OC65 3 UN97 4 UN53 6 UN67 7 UN62 5 UN72 8 UN65 7 UN62 9 UN70 11 BC38 12 UN37 10 BC41 Genetic testing P(genetic predisposition | FH) Individual risk of the disease | FH    → recommendations A. Lefebvre 2 / 13
  3. Introduction : existing models Empirical : The GAIL model (logistic

    regression) Mendelian : Claus-Easton, BRCAPro, BOADICEA, etc. The Claus-Easton model [Claus et al., 1991, Easton et al., 1993] Autosomal, biallelic, dominant, estimated allele frequency f=0.33% The hazard functions per genotype (piecewise constant) : 20 40 60 80 100 1 100 10000 Age (years) Incidence (x100,000), LogScale death BC non−carrier BC carrier Objectives : Impl. sum/product algorithm + competing risk of death A. Lefebvre 3 / 13
  4. The model : the likelihood and the genotypes P (X,

    FH) = i P Xi |Xpati , Xmati genotypes × i P (PHi |Xi ) phenotypes , FH = {PHi }i Mode of inheritance : 1 autosomal biallelic gene, f = 0.33% Founders (Hardy-Weinberg ) :    P(Xi = 00) = (1 − f )2 P(Xi = 10) = P(Xi = 01) = f (1 − f ) P(Xi = 11) = f 2 Offsprings (Mendel):        P(Xi = 00) = (1 − Θ(Xpat)) × (1 − Θ(Xmat)) P(Xi = 10) = Θ(Xpat) × (1 − Θ(Xmat)) P(Xi = 01) = (1 − Θ(Xpat)) × Θ(Xmat) P(Xi = 11) = Θ(Xpat) × Θ(Xmat) with Θ(00) = 0, Θ(10) = Θ(01) = 0.5, Θ(11) = 1 A. Lefebvre 4 / 13
  5. The model : the phenotypes With Ti , the age

    at disease onset for individual i Survival data : PHi = {Ti > τi } if i is censored at age τi {Ti = τi } if i is affected at age τi Dominant model of disease : λ(t|Xi ) = λ0(t) if X = 00 λ1(t) if X = 00 i.e. ∈ {10, 01, 11} For a censored individual at age τi P(PHi |Xi ) = P(Ti > τi |Xi ) = S0(τi ) for non-carriers S1(τi ) for carriers For an affected individual at age τi P(PHi |Xi ) = P(Ti = τi |Xi ) = S0(τi )λ0(τi ) for non-carriers S1(τi )λ1(τi ) for carriers A. Lefebvre 5 / 13
  6. Model: The bayesian network1 ; sum-product algorithm P (X, FH)

    = i P Xi |Xpati , Xmati P (FHi |Xi ) Ki (Xi |Xpati ,Xmati ) → P (FH) = X i Ki (Xi |Xpati , Xmati ) With X ∈ {00, 10, 01, 11}n → 4nconfigurations 1[Koller and Friedman, 2009] A. Lefebvre 6 / 13
  7. Belief propagation Ex. : P (C7|FH) ∝ F4(6, 7)F6(6, 8)B7(7,

    8) P (X6|FH) ∝ X8 F6(6, 8)B6(6, 8) Bayesian network Complexity O(4n) → O(n × 4k), k:tree-width (ex: k=3 if no loop) F & B computed once for any later marginal or joint distribution needed A. Lefebvre 7 / 13
  8. Model : Disease risk prediction for an unaffected individual π(τ)

    = P(carrier|FH) Breast cancer specific, no competing risk S(t|FH) = Xi P(T > t, Xi |FH) = π(τ) S1(t) S1(τ) + (1 − π(τ)) S0(t) S0(τ) π(t|FH) = π(τ)S1(t) S(t|FH)S1(τ) λdisease(t|FH) = π(t|FH)λ1(t) + (1 − π(t|FH))λ0(t) With competing risk of death : T∗ = min(Tdisease, Tdeath) λboth(t|FH) = λdisease(t|FH) + λdeath(t) : hazard function of T∗ P(T ≤ t|FH) = t τ Sboth(u)λdisease(u)du = t τ exp − u τ λboth(v)dv λdisease(u)du → discretized λ → closed form formulas for pch A. Lefebvre 8 / 13
  9. Results : Carrier risk, posterior marginal carrier distribution 1 2

    3 4 5 6 FH1 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 FH3 0.0 0.2 0.4 0.6 0.8 1.0 22/05/2017 11(17 Test 1 2 5 3 4 6 Test 1 2 OC51 5 3 UN61 4 6 A. Lefebvre 9 / 13
  10. Results : Carrier risk, posterior marginal carrier distribution 1 2

    3 4 5 6 FH4 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 FH5 0.0 0.2 0.4 0.6 0.8 1.0 22/05/2017 11(24 Test 1 2 OC51 5 3 UN61 4 6 BC29 *+,- 1 2 OC51 5 BC85 3 UN61 4 6 BC29 72 A. Lefebvre 10 / 13
  11. Results, Disease risk, With competing death Test 1 UN97 2

    OC65 3 UN97 4 UN53 6 UN67 7 UN62 5 UN72 8 UN65 7 UN62 9 UN70 11 BC38 12 UN37 10 BC41 A. Lefebvre 11 / 13
  12. Results, Disease risk, With competing death 40 60 80 100

    0.0 0.1 0.2 0.3 0.4 0.5 age (years) Individual risk of breast cancer Ind. 12 without death with death 0 5 10 15 20 0.0 0.2 0.4 0.6 0.8 1.0 20 40 60 80 100 pi tau (years) Ind. risk with vs without Difference in % of S(100) competing risk of death with vs without competing risk A. Lefebvre 11 / 13
  13. Conclusion The model Adaptable (any genetic disease and model of

    disease) Fast (bayesian network - sum-product algorithm - belief propagation) Takes into account the competing risk of death What’s next? Parameters estimations Complex distributions (number of carriers in the family) with generating functions of probabilities (polynomials) → familial risk Multi-state and fragility models A. Lefebvre 12 / 13
  14. Claus, E. B., Risch, N., and Thompson, W. D. (1991).

    Genetic analysis of breast cancer in the cancer and steroid hormone study. American journal of human genetics, 48(2):232. Easton, D., Bishop, D., Ford, D., and Crockford, G. (1993). Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. the breast cancer linkage consortium. American journal of human genetics, 52(4):678. Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press. A. Lefebvre 13 / 13