al. (2016). Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis. BMC Medical Research Methodology 16, pp. 1–11. Hickey, GL et al. (2016). Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues. BMC Medical Research Methodology 16, pp. 1–15. Henderson, R et al. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1(4), pp. 465–480. Laird, NM and Ware, JH (1982). Random-effects models for longitudinal data. Biometrics 38(4), pp. 963–74. Wei, GC and Tanner, MA (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J Am Stat Assoc 85(411), pp. 699–704. Wulfsohn, MS and Tsiatis, AA (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53(1), pp. 330–339. Lin, H et al. (2002). Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med 21, pp. 2369–2382. Ripatti, S et al. (2002). Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Life Dat Anal 8(2002), pp. 349–360. Hsieh, F et al. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics 62(4), pp. 1037–1043. McLachlan, GJ and Krishnan, T (2008). The EM Algorithm and Extensions. Second. Wiley-Interscience. Murtaugh, Paul A et al. (1994). Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology 20(1), pp. 126–134. GL. Hickey Joint modelling of multivariate data 20 / 20