Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
相互情報量について
Search
sasakiK
June 20, 2019
Research
0
1.7k
相互情報量について
相互情報量を理解するための資料です
sasakiK
June 20, 2019
Tweet
Share
More Decks by sasakiK
See All by sasakiK
決定木 変数重要度 / Decision Tree Variable Importance
sasakik
0
1.2k
Other Decks in Research
See All in Research
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
財務諸表監査のための逐次検定
masakat0
1
250
音声感情認識技術の進展と展望
nagase
0
470
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
400
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
420
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
230
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
Featured
See All Featured
WCS-LA-2024
lcolladotor
0
450
BBQ
matthewcrist
89
10k
Crafting Experiences
bethany
1
53
sira's awesome portfolio website redesign presentation
elsirapls
0
150
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
77
Statistics for Hackers
jakevdp
799
230k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Design in an AI World
tapps
0
150
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
70
Navigating Team Friction
lara
192
16k
Odyssey Design
rkendrick25
PRO
1
500
Transcript
n 相互情報量 • 情報量(エントロピー)とは • 平均情報量とは • 条件付きエントロピーとは • 相互情報量とは
1
n 相互情報量 情報量(エントロピー)とは • 情報量 (エントロピー) は、 - ある出来事が起きたときに、それがどれほど起こりにくいことかを表す尺度 -
聞いてとてもビックリする情報 → 情報量が⼤きい - 聞いてもあまり驚かない情報 → 情報量が⼩さい - を確率変数, " を確率変数が取りうる値としたとき、情報量は以下の式で定義される 2 • 例1 : = % & で表が出るコインで、表が出た ときの情報量 (エントロピー) • 例2 : = % %'' で表が出るコインで、表が出たときの情 報量 (エントロピー) ↖ 情報量少ない ← 情報量多い
n 相互情報量 平均情報量(エントロピー)とは • 平均情報量は、 - 情報量を確率変数(ノード)の取りうる値ごとに計算し平均したもの - 確率変数に対して(が各値% ,
& , ..., ) を取る確率が% , & , ..., ) であるとき)、平均情報量は以下の 式で定義される 3 • 例1 : 「喫煙している」の分布が表のとき - 「喫煙している」の平均情報量は • 例1 : 「糖尿病である」の分布が表のとき - 「糖尿病である」の平均情報量は 0.6 0.4 0.1 0.9 ↖ どっちになるか半々くらいのノードの情報量(あいまいさ)のほうが、 極端に偏った分布のノードの情報量(曖昧さ)よりも⼤きい ↗
n 相互情報量 条件付きエントロピーとは • 条件付きエントロピーは、 - の値は知っている状態から、の値を新たに知ったときに得られる情報量の期待値のこと - 情報エントロピーの条件付き確率版 -
2つの確率変数とに対して, に対するの条件付きエントロピーを以下で定義する 4
n 相互情報量 相互情報量 • 相互情報量は、 - 「の情報量」と「を知っている状態におけるの情報量」の差 - を知ることでの情報量(曖昧さ)がすごく⼩さくなる →
相互情報量が⾼い - を知ることでの情報量(曖昧さ)があまり変わらない → 相互情報量が低い - ⼆つの確率変数, に対して、 との相互情報量を以下で定義する 5
6 • 情報量とエントロピーに関する重要⽤語の整理 - https://mathwords.net/entropy • texclip - https://texclip.marutank.net/ n
相互情報量 参考資料