Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Laura Melian Gutierrez - Cognitive Radio in HF Communications

SCEE Team
November 06, 2014

Laura Melian Gutierrez - Cognitive Radio in HF Communications

SCEE Team

November 06, 2014
Tweet

More Decks by SCEE Team

Other Decks in Research

Transcript

  1. Cogni7ve(Radio(in(HF(Communica7ons(
    Laura(Melián(Gu7érrez(
    [email protected](
    IDeTIC(
    Universidad(de(Las(Palmas(de(Gran(Canaria,(Spain(
    Rennes,(6th(November(2014(

    View Slide

  2. Outline(
    •  IDeTIC:(A(li/le(bit(about(us.((
    •  Communica7ons(in(the(HF(band(
    •  Cogni7ve(Radio(in(HF(communica7ons(
    – Using(wideband(HF(receivers(for(spectrum(sensing(
    – Learning(with(Hidden(Markov(Models(
    – Decision(making(for(dynamic(spectrum(access(
    •  Conclusion(
    1(

    View Slide

  3. IDeTIC(
    •  Research(Ins7tute(
    within(ULPGC(
    Research(ins7tute(within(
    Universidad(de(Las(Palmas(
    de(Gran(Canaria(
    2(
    www.ide7c.eu(
    Around 65 people
    !  Staff((PhD):(((( ( ( ( (29(
    !  Staff((no(PhD): (((((( ( ( (((8(
    !  Hired((no(permanent(staff):( (16(
    !  MSc(students: ( ( ( (((6(
    !  BSc(students:( ( ( ( (((3(
    … and 12 external collaborators

    View Slide

  4. IDeTIC:(Academic(ac7vi7es(
    3(
    Expert'course'on'
    aeronau.cal'and'airport'
    management'
    PhD'program'on''
    Communica.ons'Systems'
    Short'course'on'
    “the'port'city”'
    Master'on'home'
    automa.on,'
    architecture'and'
    sustainable'for'
    tourism'
    Expert'course'on'
    IT'and'tourism'
    Master'on'IT'solu.ons'
    for'the'environment'
    and'welfare'

    View Slide

  5. IDeTIC:(Research(fields(
    4(
    RF'Systems'&'Radar'
    Sensor'networking,'
    SmartSpaces'&'IoT'
    Automa.c'geoloca.on'
    of'wildfires'
    Mari.me'
    communica.ons'&'
    surveillance'
    Wireless'Photonics'
    &'InKhome'
    Services'
    IT'applied'to'Social'
    Sciences'
    Space'&'AircraL'
    Electronics'
    Biometrics'&'
    Signal'Processing'

    View Slide

  6. 66%
    91%
    57%
    67%
    87%
    50%
    77%
    66%
    91%
    57%
    67%
    87%
    50%
    77%
    HF(Communica7ons(
    •  Research(line(between(IDeTIC((ULPGC)(
    and(GAPS((UPM).(
    •  LongWdistance(HF(communica7ons(
    •  HFDVL(System((HF(Data+Voice(Link):(
    –  Based( on( SoZware( Radio( with(
    mul7carrier(modula7ons.(
    –  Digital(interac7ve(voice(and(highW
    data(rate(transmissions.((
    –  Operates( with( commercial(
    transceivers.(
    –  SISO( &( SIMO( (up( to( 4( Rx)(
    configura7ons.(
    •  Three(configura7ons(in(data(
    transmission:(
    –  File(transfer(
    –  Short(message((SMS)(
    –  HFMail( 5(
    [EXAMPLE , ]

    View Slide

  7. HFDVL:(Real(Tests(
    6(
    Tests done by the Spanish Department of Defense
    Arnomendi ship (60 days) Flight from Manas to Zaragoza (14 h)
    Hercules C-130 airplane
    Canary(
    Islands
    6021 Km
    7950'Km
    3864'Km

    View Slide

  8. HFSA_IDeTIC_F1_V01(Database(
    Spectrum(ac7vity(in(the(14(MHz(amateur(band.(
    •  Power(measurements(in(the(frequency(domain.(
    •  600(kHz(bandwidth((200(channels(simultaneously):(
    amateur(band(and(other(sta7ons.(
    •  Dura7on:(10(minutes.(
    •  Weekdays(&(Weekends.(
    •  Each(sample(represents(a(3kHz(channel(in(2(seconds.(
    7(
    Yagi
    antenna
    Broad-band HF transceiver
    Spectrum power
    measurement
    Agilent
    Vector Signal Analyzer
    PC with:
    System Vue and
    VSA software

    View Slide

  9. HFSA_IDeTIC_F1_V01(Database(
    Spectrum(ac7vity(in(the(14(MHz(amateur(band.(
    8(

    View Slide

  10. Cogni7ve(Radio(in(the(HF(band(
    •  Challenges(to(face(in(this(environment(
    – There(is(no(coordina7on(among(users.(
    •  Frequency(alloca7on(per(country.(
    •  TransWhorizon(behaviour.(
    – Use(of(wideband(receivers:(
    •  The(dynamic(range(of(the(received(power(is(wider(than(
    cellular(environments.(
    •  Strongly(affected(by(narrowband(interference.(
    9(

    View Slide

  11. Outline(
    10(
    Learning/(
    Knowledge(extrac7on(
    Spectrum(
    sensing(
    Wireless(
    receiver(
    Decision(
    making(
    Wireless(
    transmi/er(
    Frequency'
    spectrum'
    Transmit) Observe)

    View Slide

  12. NBI(in(wideband(HF(receivers(
    11(

    View Slide

  13. NBI(in(wideband(HF(receivers(
    12(

    View Slide

  14. NBI(in(wideband(HF(receivers(
    Wideband(HF(transceiver(–(Receiver(diagram(block(
    13(

    ADC
    BW = 1.0 MHz
    112 MHz
    122.7 MHz
    82-109 MHz
    BW 1 MHz
    10.7 MHz
    Image-rejection
    Filter 3-30MHz
    Band Pass
    Filters 3-30MHz RF Amp
    ≤ 20
    dB
    DDS
    Low Pass
    10.7 MHz
    AGC
    ≤ 75 dB
    RS232




    µController
    CARDS12

    ADC
    BW = 1.0 MHz
    112 MHz
    BW = 1.0 MHz
    112 MHz
    122.7 MHz
    82-109 MHz
    BW 1 MHz
    10.7 MHz
    BW 1 MHz
    10.7 MHz
    Image-rejection
    Filter 3-30MHz
    Image-rejection
    Filter 3-30MHz
    Band Pass
    Filters 3-30MHz
    Band Pass
    Filters 3-30MHz RF Amp
    ≤ 20
    dB
    ≤ 20
    dB
    DDS
    Low Pass
    10.7 MHz
    AGC
    ≤ 75 dB
    RS232




    µController
    CARDS12
    We(must(detect(and(mi7gate(in(the(analog(domain(

    View Slide

  15. NBI(detec7on(in(wideband(HF(receivers(
    14(
    Our(proposal(based(on(Compressive(Sensing(for(NBI(detec7on(
    (
    (
    (
    ((A(parallel(system(to(the(wideband(receiver(with:(
    (W(Detec7on(phase(
    (W(Mi7ga7on(block(
    ADC(with(fs
    (<

    View Slide

  16. 15(
    NBI(detec7on(in(wideband(HF(receivers(
    Linear(Measurement(
    Process(
    Φ(
    M x N transforma7on(
    (M < N)(
    x =(Original(Signal(
    (N(samples)(
    y =(Compressive(Measurements(
    (M(measurements)(
    y = Φ x "
    Basics(of(Compressive(Sensing:(

    View Slide

  17. 16(
    NBI(detec7on(in(wideband(HF(receivers(
    y = Φ x "
    Basics(of(Compressive(Sensing:(
    x = Ψ s "
    Sparse(Signal(
    Fourier(basis(
    Compressible(Signal(

    View Slide

  18. 17(
    NBI(detec7on(in(wideband(HF(receivers(
    y =(Compressive(Measurements ( ( (K =(Sparsity(level)
    (
    Φ =(Measurement(Matrix " " " "s =(Sparse(Signal(
    "
    x =(Original(Signal( ( ( ( ( ( (Ψ =(Sparsity(Basis(
    "

    View Slide

  19. NBI(detec7on(in(wideband(HF(receivers(
    18(
    Our(proposal(based(on(Compressive(Sensing(for(NBI(detec7on(
    (
    (
    (
    (
    Unpublished(Results(

    View Slide

  20. Outline(
    19(
    Learning/(
    Knowledge(extrac7on(
    Spectrum(
    sensing(
    Wireless(
    receiver(
    Decision(
    making(
    Wireless(
    transmi/er(
    Frequency'
    spectrum'
    Transmit) Observe)

    View Slide

  21. Hidden(Markov(Model(
    20(
    Hidden'Markov'Model'
    Doubly( embedded( stochas7c( process( with( an( underlying(
    stochas7c(process(that(is(not(observable((it(is(hidden),(but(it(can(
    only( be( observed( through( another( set( of( stochas7c( processes(
    that(produce(the(sequence(of(observa7ons.(
    ...
    Box 1 Box 2 Box N

    View Slide

  22. Hidden(Markov(Model(
    •  The(three(basic(problems(of(HMM(
    – The(evalua7on(problem:( ((
    (Forward(step(of(ForwardWBackward(procedure(
    – The(decoding(problem:((
    (Viterbi(algorithm(
    – The(learning(problem:((
    (BaumWWelch(method(
    21(

    View Slide

  23. Data(segmenta7on(
    22(
    2 s. 1 minute
    1 0 0 ... ... ... ...
    1 1 1 1 1 1 1 1 1 1 0
    0 0 0 0 0 0 0 0 0 0
    3 1
    2 3 ... 1
    10 minutes

    View Slide

  24. HF(Spectrum(Ac7vity(Predic7on(
    •  Main(model:(
    (Ergodic(HMM(
    (10(minutes(sequences(
    •  3(submodels:(
    (LeZWright(HMM(
    (Observa7on(symbols(for(1(
    (minute(
    23(
    HMM1
    HMM2
    HMM3
    1 2 3 4 39 40
    ...
    38

    View Slide

  25. HF(Spectrum(Ac7vity(Predic7on(
    Submodel 1
    λ
    1
    = (A
    1
    ,B
    1

    1
    )
    Submodel 2
    λ
    2
    = (A
    2
    ,B
    2

    2
    )
    Submodel 3
    λ
    3
    = (A
    3
    ,B
    3

    3
    )
    P(O
    T

    2
    ) P(O
    T

    3
    )
    P(O
    T

    1
    )
    B’
    11
    B’
    22
    B’
    33
    High-level model
    New definition of
    the high-level model:
    Previous
    detected states
    High-level model
    λ = (A,B’,π)
    max(P(OT+1
    |λ))
    Predicted state
    B’
    11
    0 0
    0 B’
    22
    0
    0 0 B’
    33
    B’ =
    O
    T
    Observations
    t (min)
    T
    T-1
    Submodels
    t (min)
    T-1 T
    T-2
    ... ST
    24(

    View Slide

  26. HF(Spectrum(Ac7vity(Predic7on(
    1 2 3 4 5 6 7 8
    4
    6
    8
    10
    12
    14
    16
    Acquired knowledge (min.)
    Average error rate (%)
    Global performance
    Normal activity
    High activity
    25(

    View Slide

  27. Outline(
    26(
    Learning/(
    Knowledge(extrac7on(
    Spectrum(
    sensing(
    Wireless(
    receiver(
    Decision(
    making(
    Wireless(
    transmi/er(
    Frequency'
    spectrum'
    Transmit) Observe)
    Joint(work(at(Supélec(

    View Slide

  28. Decision(making(with(UCB(
    Upper(Confidence(Bound((UCB)(algorithm(to(provide(HF(
    secondary(users(with(dynamic(access(to(the(spectrum.(
    27(
    Joint(work(at(Supélec(
    Exploita7on( Explora7on(

    View Slide

  29. Decision(making(with(UCB(
    28(
    Joint(work(at(Supélec(
    Unpublished(Results(

    View Slide

  30. Conclusion(
    The(applica7on(of(Cogni7ve(Radio(to(HF(
    communica7ons(might(be(feasible(
    (
    •  Both(Learning(with(HMM(and(decision(making(with(
    UCB(can(help(secondary(HF(users(to(avoid(collisions(
    with(other(users.(
    •  A(compressive(detector(can(be(used(in(wideband(HF(
    receivers(to(detect(NBI.(
    29(

    View Slide

  31. Thank(you(for(your(a/en7on!(

    View Slide

  32. Cogni7ve(Radio(in(HF(Communica7ons(
    Laura(Melián(Gu7érrez(
    [email protected](
    IDeTIC(
    Universidad(de(Las(Palmas(de(Gran(Canaria,(Spain(
    Rennes,(6th(November(2014(

    View Slide