Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
Laura Melian Gutierrez - Cognitive Radio in HF Communications
SCEE Team
November 06, 2014
Research
0
76
Laura Melian Gutierrez - Cognitive Radio in HF Communications
SCEE Team
November 06, 2014
Tweet
Share
More Decks by SCEE Team
See All by SCEE Team
Cédric Marchand - Non-Binary LDPC codes
scee_team
1
200
Marie Chabert - Periodic Non-Uniform Sampling (PNS) for Satellite Communications
scee_team
0
63
Eleftherios Kofidis - Channel Estimation in Filter Bank-based Multicarrier Systems: Fundamentals and Recent Advances
scee_team
0
120
Adrien Thierry - Reconfiguration Partielle dynamique des FPGA pour les Applications Spatiales
scee_team
0
86
Hamed Ahmadi - Learning, prediction and selection algorithms for opportunistic spectrum access
scee_team
0
47
Arman Farhang - New Waveform Candidates for 5G: Options and Opportunities
scee_team
0
130
Julio Cesar - Novel spectrum sensing schemes for Cognitive Radio Networks
scee_team
0
69
Laurent Martinod - FP7 EMPHATIC project: Airbus D&S current view and study
scee_team
0
77
Vincent Savaux - Pilot-Aided and Blind Equalization in FBMC Modulation for PMR Networks
scee_team
0
67
Other Decks in Research
See All in Research
時間情報表現抽出とルールベース解析器のこれから / Temporal Expression Analysis in Japanese and Future of Rule-based Approach
yag_ays
PRO
0
750
Task-Oriented Word Segmentation (Presentation for Doctoral Dissertation)
tathi
3
240
第1回『帰ってきたウルトラマン』勉強会〜ウルトラマンが帰ってきた〜
hirokundayon
0
550
機械学習ベースの動画像処理における近似計算手法の検討 (CPSY 2022/03)
hashi0203
0
170
ライティング支援のための文法誤り訂正
chemical_tree
1
1k
第8回チャンピオンズミーティング・サジタリウス杯決勝集計 / Umamusume Sagittarius 2021 Final
kitachan_black
0
1.1k
2022.2.11 第6回 統計・機械学習若手シンポジウム チュートリアル講演 Vision and LanguageとTransformers
sei88888
7
1.6k
AIOps研究録―SREのための システム障害の自動原因診断 / SRE NEXT 2022
yuukit
5
1.3k
研究紹介2022年度版
sh01k
0
330
ICCV 2021 ただただVision and Languageの論文を読んでみた
yushiku
3
1.7k
テキストベクトルの重み付けを用いたタスクに対する単語分割の最適化
tathi
1
160
深層学習によるセマンティックセグメンテーションとその最新動向
hf149
0
910
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
29
4.3k
Practical Orchestrator
shlominoach
178
8.6k
How to name files
jennybc
39
58k
Optimizing for Happiness
mojombo
365
63k
Bootstrapping a Software Product
garrettdimon
295
110k
Side Projects
sachag
449
37k
The Power of CSS Pseudo Elements
geoffreycrofte
46
3.9k
Music & Morning Musume
bryan
35
4.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_i
21
14k
Support Driven Design
roundedbygravity
86
8.4k
Three Pipe Problems
jasonvnalue
89
8.6k
Code Reviewing Like a Champion
maltzj
506
37k
Transcript
Cogni7ve(Radio(in(HF(Communica7ons( Laura(Melián(Gu7érrez( lmelian@ide7c.eu( IDeTIC( Universidad(de(Las(Palmas(de(Gran(Canaria,(Spain( Rennes,(6th(November(2014(
Outline( • IDeTIC:(A(li/le(bit(about(us.(( • Communica7ons(in(the(HF(band( • Cogni7ve(Radio(in(HF(communica7ons( – Using(wideband(HF(receivers(for(spectrum(sensing( – Learning(with(Hidden(Markov(Models( – Decision(making(for(dynamic(spectrum(access(
• Conclusion( 1(
IDeTIC( • Research(Ins7tute( within(ULPGC( Research(ins7tute(within( Universidad(de(Las(Palmas( de(Gran(Canaria( 2( www.ide7c.eu( Around
65 people ! Staff((PhD):(((( ( ( ( (29( ! Staff((no(PhD): (((((( ( ( (((8( ! Hired((no(permanent(staff):( (16( ! MSc(students: ( ( ( (((6( ! BSc(students:( ( ( ( (((3( … and 12 external collaborators
IDeTIC:(Academic(ac7vi7es( 3( Expert'course'on' aeronau.cal'and'airport' management' PhD'program'on'' Communica.ons'Systems' Short'course'on' “the'port'city”' Master'on'home'
automa.on,' architecture'and' sustainable'for' tourism' Expert'course'on' IT'and'tourism' Master'on'IT'solu.ons' for'the'environment' and'welfare'
IDeTIC:(Research(fields( 4( RF'Systems'&'Radar' Sensor'networking,' SmartSpaces'&'IoT' Automa.c'geoloca.on' of'wildfires' Mari.me' communica.ons'&' surveillance'
Wireless'Photonics' &'InKhome' Services' IT'applied'to'Social' Sciences' Space'&'AircraL' Electronics' Biometrics'&' Signal'Processing'
66% 91% 57% 67% 87% 50% 77% 66% 91% 57%
67% 87% 50% 77% HF(Communica7ons( • Research(line(between(IDeTIC((ULPGC)( and(GAPS((UPM).( • LongWdistance(HF(communica7ons( • HFDVL(System((HF(Data+Voice(Link):( – Based( on( SoZware( Radio( with( mul7carrier(modula7ons.( – Digital(interac7ve(voice(and(highW data(rate(transmissions.(( – Operates( with( commercial( transceivers.( – SISO( &( SIMO( (up( to( 4( Rx)( configura7ons.( • Three(configura7ons(in(data( transmission:( – File(transfer( – Short(message((SMS)( – HFMail( 5( [EXAMPLE , ]
HFDVL:(Real(Tests( 6( Tests done by the Spanish Department of Defense
Arnomendi ship (60 days) Flight from Manas to Zaragoza (14 h) Hercules C-130 airplane Canary( Islands 6021 Km 7950'Km 3864'Km
HFSA_IDeTIC_F1_V01(Database( Spectrum(ac7vity(in(the(14(MHz(amateur(band.( • Power(measurements(in(the(frequency(domain.( • 600(kHz(bandwidth((200(channels(simultaneously):( amateur(band(and(other(sta7ons.( • Dura7on:(10(minutes.( •
Weekdays(&(Weekends.( • Each(sample(represents(a(3kHz(channel(in(2(seconds.( 7( Yagi antenna Broad-band HF transceiver Spectrum power measurement Agilent Vector Signal Analyzer PC with: System Vue and VSA software
HFSA_IDeTIC_F1_V01(Database( Spectrum(ac7vity(in(the(14(MHz(amateur(band.( 8(
Cogni7ve(Radio(in(the(HF(band( • Challenges(to(face(in(this(environment( – There(is(no(coordina7on(among(users.( • Frequency(alloca7on(per(country.( • TransWhorizon(behaviour.( – Use(of(wideband(receivers:( •
The(dynamic(range(of(the(received(power(is(wider(than( cellular(environments.( • Strongly(affected(by(narrowband(interference.( 9(
Outline( 10( Learning/( Knowledge(extrac7on( Spectrum( sensing( Wireless( receiver( Decision( making(
Wireless( transmi/er( Frequency' spectrum' Transmit) Observe)
NBI(in(wideband(HF(receivers( 11(
NBI(in(wideband(HF(receivers( 12(
NBI(in(wideband(HF(receivers( Wideband(HF(transceiver(–(Receiver(diagram(block( 13( ADC BW = 1.0 MHz 112
MHz 122.7 MHz 82-109 MHz BW 1 MHz 10.7 MHz Image-rejection Filter 3-30MHz Band Pass Filters 3-30MHz RF Amp ≤ 20 dB DDS Low Pass 10.7 MHz AGC ≤ 75 dB RS232 µController CARDS12 ADC BW = 1.0 MHz 112 MHz BW = 1.0 MHz 112 MHz 122.7 MHz 82-109 MHz BW 1 MHz 10.7 MHz BW 1 MHz 10.7 MHz Image-rejection Filter 3-30MHz Image-rejection Filter 3-30MHz Band Pass Filters 3-30MHz Band Pass Filters 3-30MHz RF Amp ≤ 20 dB ≤ 20 dB DDS Low Pass 10.7 MHz AGC ≤ 75 dB RS232 µController CARDS12 We(must(detect(and(mi7gate(in(the(analog(domain(
NBI(detec7on(in(wideband(HF(receivers( 14( Our(proposal(based(on(Compressive(Sensing(for(NBI(detec7on( ( ( ( ((A(parallel(system(to(the(wideband(receiver(with:( (W(Detec7on(phase( (W(Mi7ga7on(block( ADC(with(fs
(<<(fNyq(
15( NBI(detec7on(in(wideband(HF(receivers( Linear(Measurement( Process( Φ( M x N transforma7on( (M
< N)( x =(Original(Signal( (N(samples)( y =(Compressive(Measurements( (M(measurements)( y = Φ x " Basics(of(Compressive(Sensing:(
16( NBI(detec7on(in(wideband(HF(receivers( y = Φ x " Basics(of(Compressive(Sensing:( x =
Ψ s " Sparse(Signal( Fourier(basis( Compressible(Signal(
17( NBI(detec7on(in(wideband(HF(receivers( y =(Compressive(Measurements ( ( (K =(Sparsity(level) ( Φ
=(Measurement(Matrix " " " "s =(Sparse(Signal( " x =(Original(Signal( ( ( ( ( ( (Ψ =(Sparsity(Basis( "
NBI(detec7on(in(wideband(HF(receivers( 18( Our(proposal(based(on(Compressive(Sensing(for(NBI(detec7on( ( ( ( ( Unpublished(Results(
Outline( 19( Learning/( Knowledge(extrac7on( Spectrum( sensing( Wireless( receiver( Decision( making(
Wireless( transmi/er( Frequency' spectrum' Transmit) Observe)
Hidden(Markov(Model( 20( Hidden'Markov'Model' Doubly( embedded( stochas7c( process( with( an( underlying(
stochas7c(process(that(is(not(observable((it(is(hidden),(but(it(can( only( be( observed( through( another( set( of( stochas7c( processes( that(produce(the(sequence(of(observa7ons.( ... Box 1 Box 2 Box N
Hidden(Markov(Model( • The(three(basic(problems(of(HMM( – The(evalua7on(problem:( (( (Forward(step(of(ForwardWBackward(procedure( – The(decoding(problem:(( (Viterbi(algorithm( – The(learning(problem:(( (BaumWWelch(method(
21(
Data(segmenta7on( 22( 2 s. 1 minute 1 0 0 ...
... ... ... 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3 1 2 3 ... 1 10 minutes
HF(Spectrum(Ac7vity(Predic7on( • Main(model:( (Ergodic(HMM( (10(minutes(sequences( • 3(submodels:( (LeZWright(HMM( (Observa7on(symbols(for(1( (minute(
23( HMM1 HMM2 HMM3 1 2 3 4 39 40 ... 38
HF(Spectrum(Ac7vity(Predic7on( Submodel 1 λ 1 = (A 1 ,B 1
,π 1 ) Submodel 2 λ 2 = (A 2 ,B 2 ,π 2 ) Submodel 3 λ 3 = (A 3 ,B 3 ,π 3 ) P(O T |λ 2 ) P(O T |λ 3 ) P(O T |λ 1 ) B’ 11 B’ 22 B’ 33 High-level model New definition of the high-level model: Previous detected states High-level model λ = (A,B’,π) max(P(OT+1 |λ)) Predicted state B’ 11 0 0 0 B’ 22 0 0 0 B’ 33 B’ = O T Observations t (min) T T-1 Submodels t (min) T-1 T T-2 ... ST 24(
HF(Spectrum(Ac7vity(Predic7on( 1 2 3 4 5 6 7 8 4
6 8 10 12 14 16 Acquired knowledge (min.) Average error rate (%) Global performance Normal activity High activity 25(
Outline( 26( Learning/( Knowledge(extrac7on( Spectrum( sensing( Wireless( receiver( Decision( making(
Wireless( transmi/er( Frequency' spectrum' Transmit) Observe) Joint(work(at(Supélec(
Decision(making(with(UCB( Upper(Confidence(Bound((UCB)(algorithm(to(provide(HF( secondary(users(with(dynamic(access(to(the(spectrum.( 27( Joint(work(at(Supélec( Exploita7on( Explora7on(
Decision(making(with(UCB( 28( Joint(work(at(Supélec( Unpublished(Results(
Conclusion( The(applica7on(of(Cogni7ve(Radio(to(HF( communica7ons(might(be(feasible( ( • Both(Learning(with(HMM(and(decision(making(with( UCB(can(help(secondary(HF(users(to(avoid(collisions( with(other(users.( • A(compressive(detector(can(be(used(in(wideband(HF(
receivers(to(detect(NBI.( 29(
Thank(you(for(your(a/en7on!(
Cogni7ve(Radio(in(HF(Communica7ons( Laura(Melián(Gu7érrez( lmelian@ide7c.eu( IDeTIC( Universidad(de(Las(Palmas(de(Gran(Canaria,(Spain( Rennes,(6th(November(2014(