Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Zhou et al. 2019. Density Matching for Bilingua...

tosho
July 04, 2019

Zhou et al. 2019. Density Matching for Bilingual Word Embedding. NAACL

tosho

July 04, 2019
Tweet

More Decks by tosho

Other Decks in Science

Transcript

  1. Density Matching for Bilingual Word Embedding Chunting Zhou, Xuezhe Ma,

    Di Wang, Graham Neubig Language Technologies Institute Carnegie Mellon University      
  2. @:   • *)5:5> ' -9 ;  •

    02?=/:5> ' 34% • B<CAIdentical Words (72 ; ,+ • ; • 8&1#  Refinement !# • Bilingual Lexicon Induction (BLI) "$.6%
  3. Cross-lingual Word Embedding • B,-7?7A)+5")+ • /*>?7 -7/ 69 •

    48(@1; • high-resource -7(@ .= low-resource -748 •  ' • Online: !D 0<#?7A)+(@ • Offline: ?-7 (@ 3-7?7A)+215" :C%,(@&$ 
  4. Offline Cross-lingual Word Embedding • +TO@>:O@KFIS.7&1 • KF)N5;D,3/RG721?J4M • Wasserstein

    RG  JS #$! %" 721 • CKF)N5;GN-Q • 8=< • KF)N5;<5; D,(/6A09 * 4MPE: D, 3 L   • KF)N5; <HB'  
  5. DeMa-BWE • Density Matching for Bilingual Word Embedding • OH*V69ADW1/:*U69

    • ;Q(,5POH*V69 • <HAD*U\L73J[5P • ADE- "%!% # • GI2KFRCM' B@E-J[ • 5P8.  +0 • R`]back-translation$ • Y >N 5PIdentical words ?4 • _1&S=XT)*U^Z1
  6. Normalizing flows • "- • $!< &1 • 7; !<

    ='+( )9 •  02# ,/ >35%  *. >35% $!<   6:48    !< >35% $!<
  7. Density Estimation in Monolingual Space • %$ •  $

    ! % " • % #   %$ x_i "  $ & ! %
  8. Density Matching • "$+< ;7#?,.2   ! • 

    684:(&5% #>03 • KL  -*)  +< • (&'/ Normalizing flows x #> y #>  1= #> 9= #>    03
  9. Density Matching • %'.A @;&D/15#!#$ • #":<8? +)9(&C37  •

    KL #0-, .A  • +)*2 Normalizing flows x &C y &C # 4B &C >B &C y &C x >B= 6E   #!# 37
  10. Weak Orthogonality Constraint • /4.# + Orthogonality ) • *15"*1/4

    !8$'7"(/4  ,613,  %2  • 7:9 ,-0& 
  11. Cross-Domain Similarity Local Scaling • CSLS •  % •

    CSLS-D •  '* #") ! $& '* k-NN ( '*
  12. Experiment • MUSE  • English ó Spanish; Japanese; Finnish;

    ... • Pretrained Word Embedding: FastText w/ Wikipedia • Normalizing, Centering •   : 0.01 (en), 0.015 (morph-rich), 0.02 (others) • Vocabulary: 10,000 (en-ja), 20,000 (other pairs) • Loss: • back-translation loss: λ = 0.5 • supervised loss: α = 5 (en-zh), 10 (other pairs)
  13. Precision@1 for MUSE BLI task     

        SL-unsup-ID 
  14. Ablation study • Identical Words  • en-ja  identical

    words   • Density matching loss  • Back-translation loss    •