Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps Workshopでの学びと弥生の研究開発基盤 / takeaways from M...
Search
yayoi_dd
January 31, 2023
Technology
0
6.4k
MLOps Workshopでの学びと弥生の研究開発基盤 / takeaways from MLOps workshop and YAYOI's research and development infrastructure
弥生株式会社 もくテク
AWS re:Invent 2022 参加報告会(2023/01/26)
https://mokuteku.connpass.com/event/266065/
yayoi_dd
January 31, 2023
Tweet
Share
More Decks by yayoi_dd
See All by yayoi_dd
なぜ私たちは「生成AI-LT大会」を終了するのか / Why we are ending the Generative AI-LT competition
yayoi_dd
0
35
AIと働く / Working with AI
yayoi_dd
0
43
AIで未経験タスクの心理的ハードルが下がった話 / How AI has lowered the psychological barrier to unfamiliar tasks
yayoi_dd
0
19
品質くん~電話応対品質をAIで診断してる件~ / Quality-kun: Using AI to assess telephone response quality
yayoi_dd
0
20
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
870
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
190
“お客さま視点”を手に入れろ!! / Get the Customer’s Perspective!!
yayoi_dd
0
130
プロジェクト改善、まずは“ネタ出しの文化”から / Improving Projects Starts with a Culture of Idea Generation
yayoi_dd
0
130
使いにくい仕様を改善した件 / How We Improved a Difficult-to-Use Feature
yayoi_dd
0
140
Other Decks in Technology
See All in Technology
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.4k
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
960
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
900
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
7
2.1k
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
1.7k
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
350
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
150
toCプロダクトにおけるAI機能開発のしくじりと学び / ai-product-failures-and-learnings
rince
6
5.3k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
GCASアップデート(202510-202601)
techniczna
0
240
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The Curious Case for Waylosing
cassininazir
0
230
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
The browser strikes back
jonoalderson
0
360
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
280
How GitHub (no longer) Works
holman
316
140k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
400
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
Transcript
LT2 MLOps Workshopでの学びと 弥生の研究開発基盤 弥生株式会社 鍋谷 碧衣 2023/01/26
自己紹介 名前:鍋谷 碧衣(なべや あおい) 職歴:弥生に新卒入社し、エンジニア4年目 業務:YAYOI SMART
CONNECTの機械学習を使った推論部分を実装、研究開発
re:Inventでいろいろ参加しました! AWSのCEOやCTO、その他各分野責任者によるKeynote AWSの活用に関する様々なBreakout Session ゲーム形式で課題を解くAWS Jam
実際に手を動かす形式のWorkshop Swami SivasubramanianのKeynoteより
道中いろいろありましたが… 海外旅行名物、飛行機が大幅に遅れる お弁当に丸ごとりんごが入っていて どうしようか悩む
行ってよかったです! AWSのサービスで世界を盛り上げようという熱気を肌で感じられた 普段業務でなかなか触れないサービスに現地で触れて、便利さに感動した 普段使うサービスを学び直し、新たな知見を得ることができた 学びの尽きない、楽しくあっという間の5日間でした!
今回のお話 AWSのサービスで世界を盛り上げようという熱気を肌で感じられた 普段業務でなかなか触れないサービスに現地で触れて、便利さに感動した 普段使うサービスを学び直し、新たな知見を得ることができた re:Inventで参加した MLOps WorkShop
について話します
参加したWorkshop Amazon SageMaker MLOps Workshop https://catalog.us-east-1.prod.workshops.aws/workshops/7acdc7d8-0ac0-44de-bd9b- e3407147a59c/en-US
Amazon SageMakerを活用したMLOps実現のベストプラクティスをハンズオン形式で 学ぶ
現地でWorkshopに参加することの良さ あらかじめ用意されたSandbox環境で手軽にハンズオンを実施できる 導入部分で躓くことなく、コアな部分の学習に集中できる 操作面で迷った際にすぐに質問できる 文章だと言い表しにくいところなども画面を見せながら質問できる
インストラクターの作業を見ることで学べることも多い SageMakerに限らず、Jupyter Notebookの使い方のTipsなども学べる
MLOpsとは? DevOpsの機械学習(ML)版 MLモデルの開発~デプロイサイクルを自動化するもの MLプロジェクトを円滑に進め、早く大きな成果を出していくための取り組み
AWSにおけるMLOps Amazon SageMakerの各種サービスを使用してMLOpsを実現
弥生の研究開発基盤の状況 1年ほど前からAmazon SageMakerを利用し、クラウド上の実験環境を構築して いる それ以前はローカルやVMで個々で研究開発をしていた Amazon SageMakerの機能については段階的に利用を進めている途中
弥生の研究開発基盤の状況 活用状況 検証 SageMaker上のJupyter Notebookでの実験が中心 Jobについてはまだ実用的な活用は進められていない 検証結果管理 現在は手動で実施 モデル管理 研究開発環境では特にモデル管理をしていない
本番環境は独自の管理機構を構築している パフォーマンス監視 研究開発環境とサービスの開発環境が完全に別 本番環境は独自の監視機構を構築している SageMakerでMLOpsを実現するためのベストプラクティスを知りたい!
MLOpsのベストプラクティス 使用するサービス 学習・検証 SageMaker Processing Job、SageMaker Training Job 検証結果管理 SageMaker
Experiments モデル管理 SageMaker Model Registry 自動化 SageMaker Pipeline 推論 SageMaker Endpoint CI/CD SageMaker Deployment 監視 SageMaker Model Monitor Amazon SageMakerに用意されている様々なサービスを用いて、MLOpsを実現 SageMaker Python SDKを使用し、SageMaker Notebook上から環境を構築していく
SageMakerで実現するMLOpsの全体像 引用元:https://catalog.us-east-1.prod.workshops.aws/workshops/7acdc7d8-0ac0-44de-bd9b-e3407147a59c/en-US/module2/projects 今回は特に検証フェーズ 中心に確認しました
SageMakerで実現するMLOpsの全体像 引用元:https://catalog.us-east-1.prod.workshops.aws/workshops/7acdc7d8-0ac0-44de-bd9b-e3407147a59c/en-US/module2/projects 検証フェーズの SageMaker部分構成
実際に触ってみて特によいと思った点 検証段階でSageMaker Experimentsを使用できるが、これが便利 SageMaker Experimentsは、Training Jobの結果をUI上から確認できるツール 過去検証のパラメーター(条件)やトレーニング結果をUI上から確認できる
実際に触ってみて特によいと思った点 複数の検証ごとに訓練誤差等を可視化し比較
実際に触ってみて特によいと思った点 どの検証でどんなパラメーターを用いたのかも確認しやすい
実際に触ってみて特によいと思った点 検証ではパラメーターを変えながら同じアルゴリズムを動かすことも多い 手動でこれらの結果を一元管理するには独自のコードを記述する必要がある、 自動で管理してくれるのは便利
まとめ re:Inventに参加し、プロジェクトで使用しているAWSサービスについてより深 く知ることができた 研究開発の促進のためにも、AWSサービスについてもっと学んでいきたい