Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps Workshopでの学びと弥生の研究開発基盤 / takeaways from M...
Search
yayoi_dd
January 31, 2023
Technology
0
6.2k
MLOps Workshopでの学びと弥生の研究開発基盤 / takeaways from MLOps workshop and YAYOI's research and development infrastructure
弥生株式会社 もくテク
AWS re:Invent 2022 参加報告会(2023/01/26)
https://mokuteku.connpass.com/event/266065/
yayoi_dd
January 31, 2023
Tweet
Share
More Decks by yayoi_dd
See All by yayoi_dd
弥生のQAエンジニア 品質保証活動と今後の課題 / Yayoi QA engineers, Quality assurance activities and future challenges
yayoi_dd
0
8
【弥生】20250130_AWSマルチアカウント運用セミナー登壇資料
yayoi_dd
1
250
Amazon OpenSearchのコスト最適化とZeroETLへの期待 / Amazon OpenSearch Cost Optimization and ZeroETL Expectations
yayoi_dd
1
44
フロントエンドとバックエンド非同期連携パターンのセッションを見てきた話 / Talk about seeing a session on front-end and back-end asynchronous coordination patterns
yayoi_dd
0
42
reInventで学んだWebシステム運用のBadDayへの備え方 / How to Prepare for BadDay in Web System Operations Learned at reInvent
yayoi_dd
0
30
AWS reInventで感じた世界に見る生成AIの競争 / Competition in Generative AI as Seen Around the World at AWS reInvent
yayoi_dd
0
40
データの意味を適切に伝えましょう データ可視化のお手本/Conveying the Meaning of Data Appropriately: Exemplary Data Visualization
yayoi_dd
0
53
「失敗」から学ぶこと ~ソフトウェア開発と失敗の歴史~/Learning from 'Failures': The History of Software Development and Failures
yayoi_dd
0
53
ソフトウェアアーキテクチャーの基礎 エンジニアリングに基づく体系的アプローチ/Fundamentals of Software Architecture: A Systematic Approach Based on Engineering
yayoi_dd
0
55
Other Decks in Technology
See All in Technology
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
7
910
人はなぜISUCONに夢中になるのか
kakehashi
PRO
6
1.7k
Culture Deck
optfit
0
480
Visualize, Visualize, Visualize and rclone
tomoaki0705
9
68k
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
600
RSNA2024振り返り
nanachi
0
620
ローカルLLMを活用したコード生成と、ローコード開発ツールへの応用
kazuhitoyokoi
0
130
深層学習と古典的画像アルゴリズムを組み合わせた類似画像検索内製化
shutotakahashi
1
260
AndroidXR 開発ツールごとの できることできないこと
donabe3
0
130
Perlの生きのこり - エンジニアがこの先生きのこるためのカンファレンス2025
kfly8
1
220
Iceberg Meetup Japan #1 : Iceberg and Databricks
databricksjapan
0
160
JEDAI Meetup! Databricks AI/BI概要
databricksjapan
0
280
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Mobile First: as difficult as doing things right
swwweet
223
9.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Rails Girls Zürich Keynote
gr2m
94
13k
For a Future-Friendly Web
brad_frost
176
9.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Documentation Writing (for coders)
carmenintech
67
4.6k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
4 Signs Your Business is Dying
shpigford
182
22k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Transcript
LT2 MLOps Workshopでの学びと 弥生の研究開発基盤 弥生株式会社 鍋谷 碧衣 2023/01/26
自己紹介 名前:鍋谷 碧衣(なべや あおい) 職歴:弥生に新卒入社し、エンジニア4年目 業務:YAYOI SMART
CONNECTの機械学習を使った推論部分を実装、研究開発
re:Inventでいろいろ参加しました! AWSのCEOやCTO、その他各分野責任者によるKeynote AWSの活用に関する様々なBreakout Session ゲーム形式で課題を解くAWS Jam
実際に手を動かす形式のWorkshop Swami SivasubramanianのKeynoteより
道中いろいろありましたが… 海外旅行名物、飛行機が大幅に遅れる お弁当に丸ごとりんごが入っていて どうしようか悩む
行ってよかったです! AWSのサービスで世界を盛り上げようという熱気を肌で感じられた 普段業務でなかなか触れないサービスに現地で触れて、便利さに感動した 普段使うサービスを学び直し、新たな知見を得ることができた 学びの尽きない、楽しくあっという間の5日間でした!
今回のお話 AWSのサービスで世界を盛り上げようという熱気を肌で感じられた 普段業務でなかなか触れないサービスに現地で触れて、便利さに感動した 普段使うサービスを学び直し、新たな知見を得ることができた re:Inventで参加した MLOps WorkShop
について話します
参加したWorkshop Amazon SageMaker MLOps Workshop https://catalog.us-east-1.prod.workshops.aws/workshops/7acdc7d8-0ac0-44de-bd9b- e3407147a59c/en-US
Amazon SageMakerを活用したMLOps実現のベストプラクティスをハンズオン形式で 学ぶ
現地でWorkshopに参加することの良さ あらかじめ用意されたSandbox環境で手軽にハンズオンを実施できる 導入部分で躓くことなく、コアな部分の学習に集中できる 操作面で迷った際にすぐに質問できる 文章だと言い表しにくいところなども画面を見せながら質問できる
インストラクターの作業を見ることで学べることも多い SageMakerに限らず、Jupyter Notebookの使い方のTipsなども学べる
MLOpsとは? DevOpsの機械学習(ML)版 MLモデルの開発~デプロイサイクルを自動化するもの MLプロジェクトを円滑に進め、早く大きな成果を出していくための取り組み
AWSにおけるMLOps Amazon SageMakerの各種サービスを使用してMLOpsを実現
弥生の研究開発基盤の状況 1年ほど前からAmazon SageMakerを利用し、クラウド上の実験環境を構築して いる それ以前はローカルやVMで個々で研究開発をしていた Amazon SageMakerの機能については段階的に利用を進めている途中
弥生の研究開発基盤の状況 活用状況 検証 SageMaker上のJupyter Notebookでの実験が中心 Jobについてはまだ実用的な活用は進められていない 検証結果管理 現在は手動で実施 モデル管理 研究開発環境では特にモデル管理をしていない
本番環境は独自の管理機構を構築している パフォーマンス監視 研究開発環境とサービスの開発環境が完全に別 本番環境は独自の監視機構を構築している SageMakerでMLOpsを実現するためのベストプラクティスを知りたい!
MLOpsのベストプラクティス 使用するサービス 学習・検証 SageMaker Processing Job、SageMaker Training Job 検証結果管理 SageMaker
Experiments モデル管理 SageMaker Model Registry 自動化 SageMaker Pipeline 推論 SageMaker Endpoint CI/CD SageMaker Deployment 監視 SageMaker Model Monitor Amazon SageMakerに用意されている様々なサービスを用いて、MLOpsを実現 SageMaker Python SDKを使用し、SageMaker Notebook上から環境を構築していく
SageMakerで実現するMLOpsの全体像 引用元:https://catalog.us-east-1.prod.workshops.aws/workshops/7acdc7d8-0ac0-44de-bd9b-e3407147a59c/en-US/module2/projects 今回は特に検証フェーズ 中心に確認しました
SageMakerで実現するMLOpsの全体像 引用元:https://catalog.us-east-1.prod.workshops.aws/workshops/7acdc7d8-0ac0-44de-bd9b-e3407147a59c/en-US/module2/projects 検証フェーズの SageMaker部分構成
実際に触ってみて特によいと思った点 検証段階でSageMaker Experimentsを使用できるが、これが便利 SageMaker Experimentsは、Training Jobの結果をUI上から確認できるツール 過去検証のパラメーター(条件)やトレーニング結果をUI上から確認できる
実際に触ってみて特によいと思った点 複数の検証ごとに訓練誤差等を可視化し比較
実際に触ってみて特によいと思った点 どの検証でどんなパラメーターを用いたのかも確認しやすい
実際に触ってみて特によいと思った点 検証ではパラメーターを変えながら同じアルゴリズムを動かすことも多い 手動でこれらの結果を一元管理するには独自のコードを記述する必要がある、 自動で管理してくれるのは便利
まとめ re:Inventに参加し、プロジェクトで使用しているAWSサービスについてより深 く知ることができた 研究開発の促進のためにも、AWSサービスについてもっと学んでいきたい