1 Sat(U, size(χ1), η1, ρ, α, t = u), 2 Sat(U, size(χ2), η2, ρ, α, u = s). By substitution lemma for Sat, 1 Sat(U, size(χ1) + size(η2(t)), η1, ρ, α, η2(t) = η2(u))), 2 Sat(U, size(χ2) + size(η1(u)), η2, ρ, α, η1(u) = η1(s))). Using the fact that η1 : η2(r) = η2 : η1(r) for any term r, 1 Sat(U, size(χ1) + size(η2(t)), η1 : η2, ρ, α, t = u)), 2 Sat(U, size(χ2) + size(η1(u)), η1 : η2, ρ, α, u = s)). By induction hypotheis, Sat(U, size(χ), η1 : η2, ρ, α, t = s))