Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chainerによる深層学習(3)
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
youichiro
March 08, 2017
Technology
0
160
Chainerによる深層学習(3)
長岡技術科学大学
自然言語処理研究室
B3ゼミ発表(第7回)
youichiro
March 08, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
120
Multi-Agent Dual Learning
youichiro
1
190
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
140
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
160
勉強勉強会
youichiro
0
97
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
210
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
190
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
220
Other Decks in Technology
See All in Technology
Cosmos World Foundation Model Platform for Physical AI
takmin
0
960
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
220
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
1k
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
480
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
170
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
560
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
200
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
Featured
See All Featured
The Invisible Side of Design
smashingmag
302
51k
My Coaching Mixtape
mlcsv
0
49
Into the Great Unknown - MozCon
thekraken
40
2.3k
Site-Speed That Sticks
csswizardry
13
1.1k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
エンジニアに許された特別な時間の終わり
watany
106
230k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Amusing Abliteration
ianozsvald
0
100
Transcript
Chainerによる深層学習 (3) 平成29年3月9日 長岡技術科学大学 自然言語処理研究室 小川耀一朗
Chainerによる分類問題 1/26
プログラムの全体図 2/26
Irisデータ • 150個のアヤメのデータ • データ: 花びらの長さ、幅、がく片の長さ、幅 • アヤメの種類: setosa(0)、versicolor(1)、virginica(2) 例)
[ 5.0999999 3.5 1.39999998 0.2 ] => 0 [ 7. 3.20000005 4.69999981 1.39999998] => 1 [ 6.30000019 3.29999995 6. 2.5 ] => 2 訓練データ → 奇数番目のデータ75個 テストデータ → 偶数番目のデータ75個 3/26
Irisデータの用意 4/26
Irisデータの用意 Irisデータはscikit-learnに付属しているものを使う scikit-learn: 機械学習ライブラリ 分類や回帰、クラスタリングなどの機能が実装されている 5/26
Irisデータの用意 X : 花のデータ >>>print(X) [[ 5.0999999 3.5 1.39999998 0.2
] [ 4.9000001 3. 1.39999998 0.2 ] … [ 5.9000001 3. 5.0999999 1.79999995]] 6/26
Irisデータの用意 Y : 教師データ >>>print(Y) [0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] 7/26
Irisデータの用意 Y2 : 教師データ(変形) >>>print(Y2) [[ 1. 0. 0.] [
1. 0. 0.] … [ 0. 0. 1.]] 8/26
訓練データ、テストデータの用意 9/26
訓練データ、テストデータの用意 奇数番目のXデータ → 訓練データ 奇数番目のY2データ → 訓練用の教師データ 10/26
訓練データ、テストデータの用意 偶数番目のXデータ → テストデータ 偶数番目のYデータ → 正解データ 11/26
モデルの定義 12/26
モデルの定義 13 入力:花びらの長さ、幅、がく片の長さ、幅 → 4次元 出力:setosa(0)、versicolor(1)、virginica(2) → 3次元 /26
モデルの定義 14 入力層→中間層:シグモイド関数 中間層→出力層:そのまま 損失関数:二乗誤差 /26
パラメータの学習 15/26
パラメータの学習 16/26
パラメータの学習 17 おまじない /26
パラメータの学習 18 ミニバッチ処理 1回のパラメータ更新にランダムに 取り出した25個の訓練データを使う /26
パラメータの学習 19 5000回繰り返す /26
パラメータの学習 20/26
評価 21/26
評価 22 テストデータをモデルに投入し、予測データを得る テストでは勾配を求める必要はないので Variable変数をvolatile=‘on’にする >>>print(ans) [[ 1.01755786e+00 1.39655769e-02 -2.12547127e-02]
[ 9.83523667e-01 3.55108976e-02 -3.01905852e-02] [ 1.03329992e+00 -1.48231089e-02 -1.54979099e-02] … [ -1.24957561e-01 2.79694885e-01 8.36571217e-01]] /26
評価 23 nrow = 75 ncol = 3 /26
評価 24 予測の最大が正解データと一致したら ok+1 >>>print(“{} {}”.format(ans[30], yans[30])) [ 0.0668037 0.80043787
0.15562642] 1 /26
評価 25/26
発表内容 26 • ChainerによるIrisデータの分類 参考文献 「Chainerによる実践深層学習」第4章 新納 浩幸 著 オーム社
/26