Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chainerによる深層学習(3)
Search
youichiro
March 08, 2017
Technology
0
150
Chainerによる深層学習(3)
長岡技術科学大学
自然言語処理研究室
B3ゼミ発表(第7回)
youichiro
March 08, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.5k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
100
Multi-Agent Dual Learning
youichiro
1
170
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
120
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
140
勉強勉強会
youichiro
0
87
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
190
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
170
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
200
Other Decks in Technology
See All in Technology
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.4k
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
540
職種の壁を溶かして開発サイクルを高速に回す~情報透明性と職種越境から考えるAIフレンドリーな職種間連携~
daitasu
0
150
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.2k
エラーとアクセシビリティ
schktjm
1
1.2k
ガチな登山用デバイスからこんにちは
halka
1
240
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
270
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
KotlinConf 2025_イベントレポート
sony
1
120
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
230
2025年になってもまだMySQLが好き
yoku0825
8
4.7k
Webアプリケーションにオブザーバビリティを実装するRust入門ガイド
nwiizo
7
790
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
Being A Developer After 40
akosma
90
590k
A better future with KSS
kneath
239
17k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Site-Speed That Sticks
csswizardry
10
810
How to Ace a Technical Interview
jacobian
279
23k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
112
20k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Scaling GitHub
holman
463
140k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Embracing the Ebb and Flow
colly
87
4.8k
Transcript
Chainerによる深層学習 (3) 平成29年3月9日 長岡技術科学大学 自然言語処理研究室 小川耀一朗
Chainerによる分類問題 1/26
プログラムの全体図 2/26
Irisデータ • 150個のアヤメのデータ • データ: 花びらの長さ、幅、がく片の長さ、幅 • アヤメの種類: setosa(0)、versicolor(1)、virginica(2) 例)
[ 5.0999999 3.5 1.39999998 0.2 ] => 0 [ 7. 3.20000005 4.69999981 1.39999998] => 1 [ 6.30000019 3.29999995 6. 2.5 ] => 2 訓練データ → 奇数番目のデータ75個 テストデータ → 偶数番目のデータ75個 3/26
Irisデータの用意 4/26
Irisデータの用意 Irisデータはscikit-learnに付属しているものを使う scikit-learn: 機械学習ライブラリ 分類や回帰、クラスタリングなどの機能が実装されている 5/26
Irisデータの用意 X : 花のデータ >>>print(X) [[ 5.0999999 3.5 1.39999998 0.2
] [ 4.9000001 3. 1.39999998 0.2 ] … [ 5.9000001 3. 5.0999999 1.79999995]] 6/26
Irisデータの用意 Y : 教師データ >>>print(Y) [0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] 7/26
Irisデータの用意 Y2 : 教師データ(変形) >>>print(Y2) [[ 1. 0. 0.] [
1. 0. 0.] … [ 0. 0. 1.]] 8/26
訓練データ、テストデータの用意 9/26
訓練データ、テストデータの用意 奇数番目のXデータ → 訓練データ 奇数番目のY2データ → 訓練用の教師データ 10/26
訓練データ、テストデータの用意 偶数番目のXデータ → テストデータ 偶数番目のYデータ → 正解データ 11/26
モデルの定義 12/26
モデルの定義 13 入力:花びらの長さ、幅、がく片の長さ、幅 → 4次元 出力:setosa(0)、versicolor(1)、virginica(2) → 3次元 /26
モデルの定義 14 入力層→中間層:シグモイド関数 中間層→出力層:そのまま 損失関数:二乗誤差 /26
パラメータの学習 15/26
パラメータの学習 16/26
パラメータの学習 17 おまじない /26
パラメータの学習 18 ミニバッチ処理 1回のパラメータ更新にランダムに 取り出した25個の訓練データを使う /26
パラメータの学習 19 5000回繰り返す /26
パラメータの学習 20/26
評価 21/26
評価 22 テストデータをモデルに投入し、予測データを得る テストでは勾配を求める必要はないので Variable変数をvolatile=‘on’にする >>>print(ans) [[ 1.01755786e+00 1.39655769e-02 -2.12547127e-02]
[ 9.83523667e-01 3.55108976e-02 -3.01905852e-02] [ 1.03329992e+00 -1.48231089e-02 -1.54979099e-02] … [ -1.24957561e-01 2.79694885e-01 8.36571217e-01]] /26
評価 23 nrow = 75 ncol = 3 /26
評価 24 予測の最大が正解データと一致したら ok+1 >>>print(“{} {}”.format(ans[30], yans[30])) [ 0.0668037 0.80043787
0.15562642] 1 /26
評価 25/26
発表内容 26 • ChainerによるIrisデータの分類 参考文献 「Chainerによる実践深層学習」第4章 新納 浩幸 著 オーム社
/26