Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chainerによる深層学習(3)
Search
youichiro
March 08, 2017
Technology
0
150
Chainerによる深層学習(3)
長岡技術科学大学
自然言語処理研究室
B3ゼミ発表(第7回)
youichiro
March 08, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.5k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
91
Multi-Agent Dual Learning
youichiro
1
160
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
110
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
130
勉強勉強会
youichiro
0
86
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
180
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
160
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
190
Other Decks in Technology
See All in Technology
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
1.2k
Github Copilot エージェントモードで試してみた
ochtum
0
110
CursorによるPMO業務の代替 / Automating PMO Tasks with Cursor
motoyoshi_kakaku
1
500
OpenHands🤲にContributeしてみた
kotauchisunsun
1
480
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
0
160
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
340
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
26k
登壇ネタの見つけ方 / How to find talk topics
pinkumohikan
5
540
JEDAI Databricks Free Editionもくもく会
taka_aki
1
110
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
210
asken AI勉強会(Android)
tadashi_sato
0
110
自律的なスケーリング手法FASTにおけるVPoEとしてのアカウンタビリティ / dev-productivity-con-2025
yoshikiiida
0
120
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Automating Front-end Workflow
addyosmani
1370
200k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
680
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Building an army of robots
kneath
306
45k
Practical Orchestrator
shlominoach
188
11k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
710
Transcript
Chainerによる深層学習 (3) 平成29年3月9日 長岡技術科学大学 自然言語処理研究室 小川耀一朗
Chainerによる分類問題 1/26
プログラムの全体図 2/26
Irisデータ • 150個のアヤメのデータ • データ: 花びらの長さ、幅、がく片の長さ、幅 • アヤメの種類: setosa(0)、versicolor(1)、virginica(2) 例)
[ 5.0999999 3.5 1.39999998 0.2 ] => 0 [ 7. 3.20000005 4.69999981 1.39999998] => 1 [ 6.30000019 3.29999995 6. 2.5 ] => 2 訓練データ → 奇数番目のデータ75個 テストデータ → 偶数番目のデータ75個 3/26
Irisデータの用意 4/26
Irisデータの用意 Irisデータはscikit-learnに付属しているものを使う scikit-learn: 機械学習ライブラリ 分類や回帰、クラスタリングなどの機能が実装されている 5/26
Irisデータの用意 X : 花のデータ >>>print(X) [[ 5.0999999 3.5 1.39999998 0.2
] [ 4.9000001 3. 1.39999998 0.2 ] … [ 5.9000001 3. 5.0999999 1.79999995]] 6/26
Irisデータの用意 Y : 教師データ >>>print(Y) [0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] 7/26
Irisデータの用意 Y2 : 教師データ(変形) >>>print(Y2) [[ 1. 0. 0.] [
1. 0. 0.] … [ 0. 0. 1.]] 8/26
訓練データ、テストデータの用意 9/26
訓練データ、テストデータの用意 奇数番目のXデータ → 訓練データ 奇数番目のY2データ → 訓練用の教師データ 10/26
訓練データ、テストデータの用意 偶数番目のXデータ → テストデータ 偶数番目のYデータ → 正解データ 11/26
モデルの定義 12/26
モデルの定義 13 入力:花びらの長さ、幅、がく片の長さ、幅 → 4次元 出力:setosa(0)、versicolor(1)、virginica(2) → 3次元 /26
モデルの定義 14 入力層→中間層:シグモイド関数 中間層→出力層:そのまま 損失関数:二乗誤差 /26
パラメータの学習 15/26
パラメータの学習 16/26
パラメータの学習 17 おまじない /26
パラメータの学習 18 ミニバッチ処理 1回のパラメータ更新にランダムに 取り出した25個の訓練データを使う /26
パラメータの学習 19 5000回繰り返す /26
パラメータの学習 20/26
評価 21/26
評価 22 テストデータをモデルに投入し、予測データを得る テストでは勾配を求める必要はないので Variable変数をvolatile=‘on’にする >>>print(ans) [[ 1.01755786e+00 1.39655769e-02 -2.12547127e-02]
[ 9.83523667e-01 3.55108976e-02 -3.01905852e-02] [ 1.03329992e+00 -1.48231089e-02 -1.54979099e-02] … [ -1.24957561e-01 2.79694885e-01 8.36571217e-01]] /26
評価 23 nrow = 75 ncol = 3 /26
評価 24 予測の最大が正解データと一致したら ok+1 >>>print(“{} {}”.format(ans[30], yans[30])) [ 0.0668037 0.80043787
0.15562642] 1 /26
評価 25/26
発表内容 26 • ChainerによるIrisデータの分類 参考文献 「Chainerによる実践深層学習」第4章 新納 浩幸 著 オーム社
/26