incremental learning algorithm for learning nonstationary environments IEEE International Conference on Machine Learning and Cybernetics, 2007, 3618-3623 2. Bifet, A.; Holmes, G.; B; Pfahringer; Kirkby, R. & Gavalda, R. New Ensemble Methods For Evolving Data Streams Knowledge and Data Discovery, 2009 3. Kolter, J. & Maloof, M. Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts Journal of Machine Learning Research, 2007, 8, 2755-2790 4. Widmer, G. & Kubat, M. Learning in the presence of concept drift and hidden contexts Machine Learning, 1996, 23, 69-101 5. Bifet, A. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams Frontiers in Artificial Intelligence and Applications, 2010 6. Gama, J.; Medas, P.; Castillo, G. & Rodrigues, P. Learning with Drift Detection Lecture Notes in Computer Science, 2004, 3741, 286-295 7. Baena-Garcia, M.; del Campo-Avila, J.; Fidalgo, R.; Bifet, A.; Gavaldua, R. & Morales-Bueno, R. Early Drift Detection Method International Workshop on Knowledge Discovery from Data Streams, 2006 8. Alippi, C. & Roveri, M. Just-in-Time Adaptive Classifiers--Part I: Detecting Nonstationary Changes IEEE Transactions on Neural Networks, 2008, 19, 1145-1153 9. Alippi, C. & Roveri, M. Just-in-Time Adaptive Classifiers--Part II: Designing the Classifier IEEE Transactions on Neural Networks, 2008, 19, 2053-2064 10. Žliobaitė, I. Combining similarity in time and space for training set formulation under concept drift Intelligent Data Analysis, 2010, 14, 4, to appear 11. Žliobaitė, I. Learning under Concept Drift: An Overview Vilnius University, Technical Report, 2009