References
1. Muhlbaier, M. & Polikar, R.
Multiple classifiers based incremental learning algorithm for learning nonstationary environments
IEEE International Conference on Machine Learning and Cybernetics, 2007, 3618-3623
2. Bifet, A.; Holmes, G.; B; Pfahringer; Kirkby, R. & Gavalda, R.
New Ensemble Methods For Evolving Data Streams
Knowledge and Data Discovery, 2009
3. Kolter, J. & Maloof, M.
Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts
Journal of Machine Learning Research, 2007, 8, 2755-2790
4. Widmer, G. & Kubat, M.
Learning in the presence of concept drift and hidden contexts
Machine Learning, 1996, 23, 69-101
5. Bifet, A.
Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams
Frontiers in Artificial Intelligence and Applications, 2010
6. Gama, J.; Medas, P.; Castillo, G. & Rodrigues, P.
Learning with Drift Detection
Lecture Notes in Computer Science, 2004, 3741, 286-295
7. Baena-Garcia, M.; del Campo-Avila, J.; Fidalgo, R.; Bifet, A.; Gavaldua, R. & Morales-Bueno, R.
Early Drift Detection Method
International Workshop on Knowledge Discovery from Data Streams, 2006
8. Alippi, C. & Roveri, M.
Just-in-Time Adaptive Classifiers--Part I: Detecting Nonstationary Changes
IEEE Transactions on Neural Networks, 2008, 19, 1145-1153
9. Alippi, C. & Roveri, M.
Just-in-Time Adaptive Classifiers--Part II: Designing the Classifier
IEEE Transactions on Neural Networks, 2008, 19, 2053-2064
10. Žliobaitė, I.
Combining similarity in time and space for training set formulation under concept drift
Intelligent Data Analysis, 2010, 14, 4, to appear
11. Žliobaitė, I.
Learning under Concept Drift: An Overview
Vilnius University, Technical Report, 2009