Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
簡単な機械学習 / Python ML
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
kaityo256
PRO
December 22, 2020
Education
2
2.4k
簡単な機械学習 / Python ML
プログラミング基礎同演習
kaityo256
PRO
December 22, 2020
Tweet
Share
More Decks by kaityo256
See All by kaityo256
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
11k
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
13
7k
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
10
1.7k
UMAPをざっくりと理解 / Overview of UMAP
kaityo256
PRO
12
4.3k
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
7
770
論文紹介のやり方 / How to review
kaityo256
PRO
18
90k
デバッグの話 / Debugging for Beginners
kaityo256
PRO
18
1.9k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
8
730
Other Decks in Education
See All in Education
Activité_5_-_Les_indicateurs_du_climat_global.pdf
bernhardsvt
0
140
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
230
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
20251119 如果是勇者欣美爾的話, 他會怎麼做? 東海資工
pichuang
0
170
Measuring your measuring
jonoalderson
1
340
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
570
SJRC 2526
cbtlibrary
0
200
IHLヘルスケアリーダーシップ研究会17期説明資料
ihlhealthcareleadership
0
850
The World That Saved Me: A Story of Community and Gratitude
_hashimo2
3
510
1014
cbtlibrary
0
520
Node-REDで広がるプログラミング教育の可能性
ueponx
1
260
Featured
See All Featured
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Statistics for Hackers
jakevdp
799
230k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
63
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
110
How to Ace a Technical Interview
jacobian
281
24k
Paper Plane (Part 1)
katiecoart
PRO
0
4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
820
Unsuck your backbone
ammeep
671
58k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Transcript
1 簡単な機械学習 プログラミング基礎同演習 慶應義塾大学理工学部物理情報工学科 渡辺 2020/12/22
2 機械学習 • 機械学習とは • 過学習 • 回帰 • GAN
3 惑星の動きを観測する (大量のデータ) Ԧ = Ԧ モデル化 法則の抽出 (情報圧縮)
4 彗星の動きを予測できる (モデルが正しければ) Ԧ = Ԧ モデル計算 法則からスタート
5 惑星の動きを観測する (大量のデータ) なんらかのモデルを作る 彗星の動きを予測できる (モデルが正しければ) 情報圧縮
6 教師あり学習 (Supervised Learning) 教師なし学習 (Unsupervised Learning) 強化学習 (Reinforcement Learning)
「問題と解答のセット」を与えて学習させる方法 ・画像認識、家賃推定など データだけ与えて、データの分類を行う方法 ・売上データを解析し、一緒に売れそうな商品を推薦する等 エージェントの行動に適切に報酬を与えることで 最適な行動を学習させる方法 ・チェスや囲碁の思考ルーチンなど ネコ イヌ
7 分類問題 (classification) 入力に対して「ラベル」を推定する問題 ネコ イヌ 回帰問題 (regression) 入力に対して「値」を推定する問題 16万円
写真に写るものがネコか イヌか判定する 築年数、駅までの距離、 周辺施設などから家賃を 推定する 築年数: X年 駅から: 徒歩Y分 広さ: Z平米 近所にコンビニあり
8 荷重 x 伸び y バネの伸びと荷重の関係 とりあえずいろんな荷重に対して、伸びを測定してみる データセット 伸び 荷重
9 荷重xとバネの伸びyの 関係をたくさん測定する なんらかのモデルを作る 未知の荷重x’に対して、 正しい伸びy’を予測できる 情報圧縮 荷重 x 伸び
y 荷重 x’ 伸び y’
10 0 荷重 伸び 観測値 先程のデータセットをグラフにしてみる の関係が予想される 最小二乗法でaを決める モデルパラメータ
11 何が起きたか? 多数のデータセットから、モデルが決まった 情報が圧縮された このモデルは正しいか? どうすれば正しいと検証できるか?
12 データセット 訓練データ テストデータ モデルを決める モデルの予測性能を確認する データを2つのグループに分ける
13 0 入力 出力 訓練誤差 0 入力 出力 汎化誤差 訓練誤差
汎化誤差 訓練データとモデルとの誤差 テストデータとモデルとの誤差 訓練誤差が小さい =うまく学習できている 汎化誤差が小さい =モデルが予測能力を持つ
14 0 出力 入力 0 出力 入力 訓練データは完璧に再現するが… 訓練データ テストデータ
テストデータが全然合わない 0 出力 入力 訓練データに最適化され過ぎ、 予測性能を失うことを 過学習(Over fitting)と呼ぶ 実はこんな関数だった
15 荷重 x 伸び y モデル データ 荷重 x’ 伸び
y’ 予測 データ ネコ イヌ モデル モデルパラメータ:少数 最適化:最小二乗法 モデルパラメータ:多数 最適化:SGD, Adam, AdaGrad, etc. ネコ 予測
16 • 機械学習とは一種の情報圧縮 • 具体的にはパラメータの最適化 • 学習とは「訓練誤差」を減らす作業 • 目的は「汎化誤差」を減らす事 •
過学習とは「訓練データ」に最適化 され過ぎ、未知のデータへの予測能 力を失うこと
17 ※データは厚生労働省の平成30年賃金構造基本統計調査による 「年齢・学歴・企業規模」から「給与」を推定したい 学歴 中卒 高卒 高専・短大卒 大学・大学院卒 企業規模 小企業(従業員数〜99人)
中企業(従業員数〜999人) 大企業(従業員数1000人〜) 年齢 給与 「年齢・学歴・企業規模」を説明変数、「給与」を目的変数と呼ぶ
18 年齢と給与は強く相関していそう 「学歴」や「企業規模」はどのように取り込むか? = age age + age 係数の意味 毎年
円だけ給与があがる
19 →ラベルの変数化 企業規模が大きくなるほど給与が上がりそう size= 0 (小企業) 1 (中企業) 2 (大企業)
= age age + size size + 企業規模が給与に与える影響
20 = age age + size size + size= 0
(小企業) 1 (中企業) 2 (大企業) 係数の意味 小企業勤務に比べ、中企業勤務は size 円 だけ給与が多い 小企業勤務に比べ、大企業勤務は 2size 円 だけ給与が多い 中企業勤務による給与増分は、大企業と小企業の 中間であると仮定していることに 小→中→大の給与の増分は独立に扱いたい
21 「小規模かどうか?」「中規模かどうか?」の変数を作る 小 = 1 (小企業勤務) 0 (それ以外) 中 =
1 (中企業勤務) 0 (それ以外) 大 = 1 (大企業勤務) 0 (それ以外) 小 中 大 ( ) , , このようなベクトルを作ると 小企業勤務= (1, 0, 0) 中企業勤務= (0, 1, 0) 大企業勤務= (0, 0, 1) ベクトルのうち、要素一つだけ1、それ以外は0 これをone-hot 表現と呼ぶ
22 = age age + + + + 小 小
中 中 大 大 One-hot表現による回帰 係数の意味 中 中企業勤務の人は、小企業勤務の人より − 小 円だけ給与が高い 大 大企業勤務の人は、小企業勤務の人より − 小 円だけ給与が高い 差しか意味を持たないが、ラベルの数だけ変数を作るのが楽 学歴も同様にone-hot表現を作る
23 課題の手順 • Pandasを使ってデータを読み込む • 大企業に務める人の給与を学歴別にプロット • ラベル変数からone-hot表現を作る • 年齢・企業規模・学歴について回帰分析
結果の解析 = age age + + + + 小 小 中 中 大 大 company_size_small company_size_middle company_size_large age 係数が上記のような名前で得られるので、その値について考察 学歴は education_[middle/high/tech/university]という名前に
24 偽造者 (Generator) 博物館 (Real Dataset) 鑑定者 (Discriminator) 提供されたデータが 本物か偽物か見分ける
ニセのデータを生成 本物のデータを提供
25 ランタイムのタイプから「ハードウェアアクセラレータ」としてGPUを選ぶ