Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal Club]Label-efficient semantic segmenta...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
December 15, 2022
Technology
0
380
[Journal Club]Label-efficient semantic segmentation with diffusion models
Semantic Machine Intelligence Lab., Keio Univ.
PRO
December 15, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Machine Intelligence for Vision, Language, and Actions
keio_smilab
PRO
0
620
[Journal club] V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
keio_smilab
PRO
0
140
[Journal club] Model Alignment as Prospect Theoretic Optimization
keio_smilab
PRO
0
160
[Journal club] DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
keio_smilab
PRO
0
84
[Journal club] LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
keio_smilab
PRO
2
110
Will multimodal language processing change the world?
keio_smilab
PRO
4
640
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
210
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
190
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
200
Other Decks in Technology
See All in Technology
「クラウドコスト絶対削減」を支える技術—FinOpsを超えた徹底的なクラウドコスト削減の実践論
delta_tech
4
190
Claude Code に プロジェクト管理やらせたみた
unson
8
4.9k
助けて! XからWaylandに移行しないと新しいGNOMEが使えなくなっちゃう 2025-07-12
nobutomurata
2
140
マルチプロダクト環境におけるSREの役割 / SRE NEXT 2025 lunch session
sugamasao
1
390
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
2
220
第64回コンピュータビジョン勉強会「The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition」
x_ttyszk
0
170
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
1
240
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
860
AIの全社活用を推進するための安全なレールを敷いた話
shoheimitani
2
640
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
2
220
Getting to Know Your Legacy (System) with AI-Driven Software Archeology (WeAreDevelopers World Congress 2025)
feststelltaste
1
180
Contributing to Rails? Start with the Gems You Already Use
yahonda
2
120
Featured
See All Featured
Code Review Best Practice
trishagee
69
19k
GitHub's CSS Performance
jonrohan
1031
460k
A better future with KSS
kneath
238
17k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Automating Front-end Workflow
addyosmani
1370
200k
Designing for Performance
lara
610
69k
Balancing Empowerment & Direction
lara
1
440
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
GraphQLとの向き合い方2022年版
quramy
49
14k
Code Reviewing Like a Champion
maltzj
524
40k
Adopting Sorbet at Scale
ufuk
77
9.5k
Transcript
LABEL-EFFICIENT SEMANTIC SEGMENTATION WITH DIFFUSION MODELS Dmitry Baranchuk, Ivan Rubachev,
Andrey Voynov, Valentin Khrulkov, Artem Babenko Yandex Research, ICLR2022 慶應義塾大学 杉浦孔明研究室 飯岡雄偉 Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., & Babenko, A. “ Label-efficient semantic segmentation with diffusion models.” ICLR2022
概要:拡散モデルをsemantic segmentationに応用 • 拡散モデルの顕著な発展 – Semantic segmentationタスクにも応用できるのでは? • 拡散モデルが有効な表現学習器となりうるのか検証 •
多様な条件での実験により効率の良い特徴量抽出を試みる – 特定のドメインにおいてSoTAを達成 • 複雑なドメインについては将来研究 2
背景:拡散モデルの概要 • Forward Step(拡散過程) – 入力画像にガウシアンノイズを徐々に加えていく – マルコフ性を持つ • ひとつ前の時刻のみによって出力が決定する
– ここでは学習は行われない • Reverse Step(逆拡散過程) – ノイズを取り除いて,元画像を復元していく • マルコフ連鎖に基づく – この過程で学習していく 3
背景:拡散モデルの概要 4 • Forward Step(拡散過程) • 計算過程・学習方法は,同研究室の過去の輪講資料を参考 – https://speakerdeck.com/keio_smilab/journal-club-denoising-diffusion-probabilistic-models 正規分布によって
𝑥𝑡 が決定 𝛽𝑡 :ノイズの強さ(0~1) 任意の𝑥𝑡 を閉形式で表現 ⇒計算の簡略化
背景:拡散モデルの概要 5 • Reverse Step(逆拡散過程) – 共分散行列は固定のスカラー値でもよいが,学習させるとより良い性能 となることが報告されている[Nichol+, ICML21] •
計算過程・学習方法は,同研究室の過去の輪講資料を参考 – https://speakerdeck.com/keio_smilab/journal-club-denoising-diffusion-probabilistic-models
背景:拡散モデルのvision taskへの応用例 • Super resolution[Saharia+, 2021] 6 • Inpainting[Yang+, ICLR21]
• Semantic editing[Meng+, ICLR22]
提案手法:モデル構造 7 Forward Step Reverse Step クラス推定
提案手法:U-Net[Ronnebeger+, MICCAI15]の構造 • Reverse Step – Denoiseされた画像ではなく,画像に加えられてい るノイズを推測 • DDPM[Ho+,
NeurIPS20]で性能向上を報告 – 中間層の出力にsegmentに関する情報が含まれて いると仮定 – 各層の深さ・time stepごとに特徴量の抽出を行う • どの特徴量を用いると効率が良いかを比較 8
提案手法:条件ごとに出力 • クラス推定 – Reverse Stepで得られた各特徴量をconcat • 8448次元 • 本実験では{B6,
B8, B10, B12}の出力を基本的 に利用 – 数字が大きいほど深い層 – 各pixelをMLPに入力してクラス分類 • この際,異なるtime stepごとに出力 – 基本は{50, 200, 400, 600, 800} – 上記の中からクラスを選択 9
実験設定:各ドメインごとに学習 • 学習方法 – ラベルなし画像でpretrain -> 再構成 – ラベルあり画像で転移学習 •
データセット – LSUN[Yu+, 2015], FFHQ[Karras+, CVPR19] • 学習時間 – 記述なし • 256×256の50枚画像の学習に210GBのRAM使用 10 https://github.com/NVlabs/ffhq-dataset
定量的結果:各データセットで最良の性能 • mean IoUによって評価 11 Pretrain時とデータセット が異なる
定性的結果:各データセットで高い性能 12 • ピクセル単位でのクラス分類
まとめ:拡散モデルをsemantic segmentationに応用 • 拡散モデルの顕著な発展 – Semantic segmentationタスクにも応用できるのでは? • 拡散モデルが有効な表現学習器となりうるのか検証 •
多様な条件での実験により効率の良い特徴量抽出を試みる – 特定のドメインにおいてSoTAを達成 • 複雑なドメインについては将来研究 13
Appendix:各層の深さ・time stepごとの性能[定量] • 小さいtime step = Reverse Stepの後半での評価が高い • 真ん中に位置するBlockほど高性能
14
Appendix:各層の深さ・time stepごとの性能[定性] • 小さいtime step = Reverse Stepの後半での評価が高い • 真ん中に位置するBlockほど高性能
15