Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal Club]Label-efficient semantic segmenta...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
December 15, 2022
Technology
0
400
[Journal Club]Label-efficient semantic segmentation with diffusion models
Semantic Machine Intelligence Lab., Keio Univ.
PRO
December 15, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
keio_smilab
PRO
0
47
[Journal club] Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance
keio_smilab
PRO
0
49
[Journal club] Influence-Balanced Loss for Imbalanced Visual Classification
keio_smilab
PRO
0
15
[Journal club] Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval
keio_smilab
PRO
0
30
[Journal club] AuroraCap: Efficient, Performant Video Detailed Captioning and a New Benchmark
keio_smilab
PRO
0
43
[MIRU25] NaiLIA: Multimodal Retrieval of Nail Designs Based on Dense Intent Descriptions
keio_smilab
PRO
1
210
[MIRU25] An LLM-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions
keio_smilab
PRO
1
210
[MIRU2025]Preference Optimization for Multimodal Large Language Models for Image Captioning Tasks
keio_smilab
PRO
0
180
Semantic Machine Intelligence for Vision, Language, and Actions
keio_smilab
PRO
3
470
Other Decks in Technology
See All in Technology
AIとTDDによるNext.js「隙間ツール」開発の実践
makotot
5
460
あなたの知らない OneDrive
murachiakira
0
230
Evolution on AI Agent and Beyond - AGI への道のりと、シンギュラリティの3つのシナリオ
masayamoriofficial
0
130
モノレポにおけるエラー管理 ~Runbook自動生成とチームメンションの最適化
biwashi
0
540
歴代のWeb Speed Hackathonの出題から考えるデグレしないパフォーマンス改善
shuta13
6
590
Rethinking Incident Response: Context-Aware AI in Practice - Incident Buddy Edition -
rrreeeyyy
0
130
AIが住民向けコンシェルジュに?Amazon Connectと生成AIで実現する自治体AIエージェント!
yuyeah
0
260
信頼できる開発プラットフォームをどう作るか?-Governance as Codeと継続的監視/フィードバックが導くPlatform Engineeringの進め方
yuriemori
1
430
Exadata Database Service on Dedicated Infrastructure セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
1
360
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
2
20k
Engineering Failure-Resilient Systems
infraplumber0
0
130
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
2
1.1k
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.9k
How GitHub (no longer) Works
holman
315
140k
Navigating Team Friction
lara
188
15k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
It's Worth the Effort
3n
187
28k
BBQ
matthewcrist
89
9.8k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
Automating Front-end Workflow
addyosmani
1370
200k
Transcript
LABEL-EFFICIENT SEMANTIC SEGMENTATION WITH DIFFUSION MODELS Dmitry Baranchuk, Ivan Rubachev,
Andrey Voynov, Valentin Khrulkov, Artem Babenko Yandex Research, ICLR2022 慶應義塾大学 杉浦孔明研究室 飯岡雄偉 Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., & Babenko, A. “ Label-efficient semantic segmentation with diffusion models.” ICLR2022
概要:拡散モデルをsemantic segmentationに応用 • 拡散モデルの顕著な発展 – Semantic segmentationタスクにも応用できるのでは? • 拡散モデルが有効な表現学習器となりうるのか検証 •
多様な条件での実験により効率の良い特徴量抽出を試みる – 特定のドメインにおいてSoTAを達成 • 複雑なドメインについては将来研究 2
背景:拡散モデルの概要 • Forward Step(拡散過程) – 入力画像にガウシアンノイズを徐々に加えていく – マルコフ性を持つ • ひとつ前の時刻のみによって出力が決定する
– ここでは学習は行われない • Reverse Step(逆拡散過程) – ノイズを取り除いて,元画像を復元していく • マルコフ連鎖に基づく – この過程で学習していく 3
背景:拡散モデルの概要 4 • Forward Step(拡散過程) • 計算過程・学習方法は,同研究室の過去の輪講資料を参考 – https://speakerdeck.com/keio_smilab/journal-club-denoising-diffusion-probabilistic-models 正規分布によって
𝑥𝑡 が決定 𝛽𝑡 :ノイズの強さ(0~1) 任意の𝑥𝑡 を閉形式で表現 ⇒計算の簡略化
背景:拡散モデルの概要 5 • Reverse Step(逆拡散過程) – 共分散行列は固定のスカラー値でもよいが,学習させるとより良い性能 となることが報告されている[Nichol+, ICML21] •
計算過程・学習方法は,同研究室の過去の輪講資料を参考 – https://speakerdeck.com/keio_smilab/journal-club-denoising-diffusion-probabilistic-models
背景:拡散モデルのvision taskへの応用例 • Super resolution[Saharia+, 2021] 6 • Inpainting[Yang+, ICLR21]
• Semantic editing[Meng+, ICLR22]
提案手法:モデル構造 7 Forward Step Reverse Step クラス推定
提案手法:U-Net[Ronnebeger+, MICCAI15]の構造 • Reverse Step – Denoiseされた画像ではなく,画像に加えられてい るノイズを推測 • DDPM[Ho+,
NeurIPS20]で性能向上を報告 – 中間層の出力にsegmentに関する情報が含まれて いると仮定 – 各層の深さ・time stepごとに特徴量の抽出を行う • どの特徴量を用いると効率が良いかを比較 8
提案手法:条件ごとに出力 • クラス推定 – Reverse Stepで得られた各特徴量をconcat • 8448次元 • 本実験では{B6,
B8, B10, B12}の出力を基本的 に利用 – 数字が大きいほど深い層 – 各pixelをMLPに入力してクラス分類 • この際,異なるtime stepごとに出力 – 基本は{50, 200, 400, 600, 800} – 上記の中からクラスを選択 9
実験設定:各ドメインごとに学習 • 学習方法 – ラベルなし画像でpretrain -> 再構成 – ラベルあり画像で転移学習 •
データセット – LSUN[Yu+, 2015], FFHQ[Karras+, CVPR19] • 学習時間 – 記述なし • 256×256の50枚画像の学習に210GBのRAM使用 10 https://github.com/NVlabs/ffhq-dataset
定量的結果:各データセットで最良の性能 • mean IoUによって評価 11 Pretrain時とデータセット が異なる
定性的結果:各データセットで高い性能 12 • ピクセル単位でのクラス分類
まとめ:拡散モデルをsemantic segmentationに応用 • 拡散モデルの顕著な発展 – Semantic segmentationタスクにも応用できるのでは? • 拡散モデルが有効な表現学習器となりうるのか検証 •
多様な条件での実験により効率の良い特徴量抽出を試みる – 特定のドメインにおいてSoTAを達成 • 複雑なドメインについては将来研究 13
Appendix:各層の深さ・time stepごとの性能[定量] • 小さいtime step = Reverse Stepの後半での評価が高い • 真ん中に位置するBlockほど高性能
14
Appendix:各層の深さ・time stepごとの性能[定性] • 小さいtime step = Reverse Stepの後半での評価が高い • 真ん中に位置するBlockほど高性能
15