Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タス...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2024
Technology
1
230
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タスクにおける将来成否予測
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2024
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
3
[Journal club] FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction
keio_smilab
PRO
0
49
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
110
[Journal club] GraphEQA: Using 3D Semantic Scene Graphs for Real-time Embodied Question Answering
keio_smilab
PRO
0
67
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
160
[RSJ25] LILAC: Language‑Conditioned Object‑Centric Optical Flow for Open‑Loop Trajectory Generation
keio_smilab
PRO
0
120
[RSJ25] Multilingual Scene Text-Aware Multimodal Retrieval for Everyday Objects Based on Deep State Space Models
keio_smilab
PRO
0
99
[RSJ25] Everyday Object Manipulation Based on Scene Text-Aware Multimodal Retrieval
keio_smilab
PRO
1
84
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
150
Other Decks in Technology
See All in Technology
OPENLOGI Company Profile for engineer
hr01
1
46k
触れるけど壊れないWordPressの作り方
masakawai
0
580
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.6k
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
350
データエンジニアとして生存するために 〜界隈を盛り上げる「お祭り」が必要な理由〜 / data_summit_findy_Session_1
sansan_randd
0
170
AIの個性を理解し、指揮する
shoota
3
590
初海外がre:Inventだった人間の感じたこと
tommy0124
1
160
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
3
580
オブザーバビリティと育てた ID管理・認証認可基盤の歩み / The Journey of an ID Management, Authentication, and Authorization Platform Nurtured with Observability
kaminashi
2
1.5k
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.7k
アウトプットから始めるOSSコントリビューション 〜eslint-plugin-vueの場合〜 #vuefes
bengo4com
3
1.9k
kotlin-lsp の開発開始に触発されて、Emacs で Kotlin 開発に挑戦した記録 / kotlin‑lsp as a Catalyst: My Journey to Kotlin Development in Emacs
nabeo
2
150
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Side Projects
sachag
455
43k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
It's Worth the Effort
3n
187
28k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Unsuck your backbone
ammeep
671
58k
Transcript
慶應義塾⼤学 神原元就,杉浦孔明 オフライン軌道⽣成による軌道に基づく Open-Vocabulary物体操作タスクにおける将来成否予測
背景:物体操作ではタスク成否判定が重要 「野球ボールを取って⾼い机に置いて」 8x
背景:物体操作ではタスク成否判定が重要 - 3 - フォークの代わりにスプーンを持ってきて 様々なサブタスク 把持中のフォークを他の場所に置く → 引き出しを開ける →
フォークを把持し引き出しに置く → スプーンを引き出しから取る等 タスク実⾏前に⽣成した軌道の適切さを判定できれば効率性・安全性向上 [Driess+, ICML23] [Schmalstieg+, ICRA24]
関連研究: 既存のタスク成否判定機構は実⾏後の判定が中⼼ - 4 - ⼿法 概要 PaLM-E [Driess+, ICML23]
実世界の観測値を⾔語の埋め込み空間に組み込む [Shirasaka+, ICRA24] 失敗を3種類に分類.タスク失敗の際は再計画を実施 REFLECT [Liu+, CoRL23] 事前に定義された物体の状態に基づき成否判定 [Liu+, ICRA24] 将来の状態に関する潜在表現に基づくタスク成否予測 [Shirasaka+, ICRA24] [Liu+, ICRA24]
問題設定: オフライン⽣成された軌道に基づくタスク成否判定 - 5 - • ⼊⼒:指⽰⽂,1⼈称視点画像,エンドエフェクタの軌道 • 出⼒:物体操作に成功する確率の予測値 Success
Failure Status 0.8 0.2 「⽩いボウルから⾚いリンゴを取って」
提案⼿法: オフライン⽣成された軌道に基づくタスク成否予測機構 - 6 - 1. 軌道を埋め込み画像特徴量により条件付けを⾏うTrajectory Encoder 2. ⾃然⾔語指⽰⽂と軌道に関する特徴量のアラインメントを⾏う
Transformer Decoder
Trajectory Encoder: 軌道を埋め込み,画像による条件付け - 7 - ・ ・ ・ CNN
Pooling λ-Rep. Encoder [Goko+, CoRL24] • 前提 軌道は環境の状況に基づき⽣成 される 1⼈称画像と軌道の特徴量の 対応づけが有効 • 獲得した特徴量はCross- Attention機構により⾔語特徴量 とアラインメント
定量的結果:ベースライン⼿法を精度において上回った - 8 - ▪ SP-RT-1データセット(13Kエピソード,[Goko+, CoRL24])において評価 ▪ w/o CNN:
Trajectory EncoderのCNNをLinearに変更 モデル 精度 [%] 齋藤ら [齋藤+, JSAI24] 74.9±0.79 提案⼿法 w/o CNN 83.2±0.48 提案⼿法 83.4±0.65 “pick orange can from bottom drawer and place on counter” Trajectory Encoderの構造の有効性も確認
定性的結果 (1/2): タスクに対して適切な軌道であることを理解 - 9 - “Place rxbar chocolate into
middle drawer” ▪ チョコレート菓⼦を適切に引き出しに格納 J 適切にタスクの成功を予測
定性的結果 (2/2):物体の位置関係について適切に考慮 - 10 - ▪ オレンジ⽸を動かそうとしている & 倒してしまった “Move
green rice chip bag near orange can” J 適切にタスクの失敗を予測
まとめ - 11 - ▪ 物体操作における,エンドエフェクタの軌道に基づくタスク成否予測 ▪ 新規性 1. 軌道を埋め込み画像特徴量により条件付けを⾏うTrajectory
Encoderの導⼊ 2. ⾃然⾔語指⽰⽂と軌道に関する特徴量のアラインメントを⾏う Transformer Decoder ▪ 精度においてベースライン⼿法を上回った 10x