Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タス...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2024
Technology
1
150
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タスクにおける将来成否予測
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2024
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Will multimodal language processing change the world?
keio_smilab
PRO
3
400
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
81
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
81
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
82
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
1
100
[Journal club] Simplified State Space Layers for Sequence Modeling
keio_smilab
PRO
0
91
[Journal club] Detecting and Preventing Hallucinations in Large Vision Language Models
keio_smilab
PRO
1
110
[IROS24] Object Segmentation from Open-Vocabulary Manipulation Instructions Based on Optimal Transport Polygon Matching with Multimodal Foundation Models
keio_smilab
PRO
0
76
[IROS24] Learning-To-Rank Approach for Identifying Everyday Objects Using a Physical-World Search Engine
keio_smilab
PRO
0
130
Other Decks in Technology
See All in Technology
技術に触れたり、顔を出そう
maruto
1
140
機械学習を「社会実装」するということ 2025年版 / Social Implementation of Machine Learning 2025 Version
moepy_stats
4
730
20250116_JAWS_Osaka
takuyay0ne
2
190
20240513 - 框裡框外_文學院學生如何在AI世代安身立命 @ 淡江大學
dpys
0
650
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
110
Copilotの力を実感!3ヶ月間の生成AI研修の試行錯誤&成功事例をご紹介。果たして得たものとは・・?
ktc_shiori
0
320
深層学習と3Dキャプチャ・3Dモデル生成(土木学会応用力学委員会 応用数理・AIセミナー)
pfn
PRO
0
450
データ基盤におけるIaCの重要性とその運用
mtpooh
1
220
Formal Development of Operating Systems in Rust
riru
1
420
完全自律型AIエージェントとAgentic Workflow〜ワークフロー構築という現実解
pharma_x_tech
0
320
AWS re:Invent 2024 recap in 20min / JAWSUG 千葉 2025.1.14
shimy
1
100
CDKのコードレビューを楽にするパッケージcdk-mentorを作ってみた/cdk-mentor
tomoki10
0
190
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Cult of Friendly URLs
andyhume
78
6.1k
We Have a Design System, Now What?
morganepeng
51
7.3k
Optimising Largest Contentful Paint
csswizardry
33
3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
It's Worth the Effort
3n
183
28k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
Transcript
慶應義塾⼤学 神原元就,杉浦孔明 オフライン軌道⽣成による軌道に基づく Open-Vocabulary物体操作タスクにおける将来成否予測
背景:物体操作ではタスク成否判定が重要 「野球ボールを取って⾼い机に置いて」 8x
背景:物体操作ではタスク成否判定が重要 - 3 - フォークの代わりにスプーンを持ってきて 様々なサブタスク 把持中のフォークを他の場所に置く → 引き出しを開ける →
フォークを把持し引き出しに置く → スプーンを引き出しから取る等 タスク実⾏前に⽣成した軌道の適切さを判定できれば効率性・安全性向上 [Driess+, ICML23] [Schmalstieg+, ICRA24]
関連研究: 既存のタスク成否判定機構は実⾏後の判定が中⼼ - 4 - ⼿法 概要 PaLM-E [Driess+, ICML23]
実世界の観測値を⾔語の埋め込み空間に組み込む [Shirasaka+, ICRA24] 失敗を3種類に分類.タスク失敗の際は再計画を実施 REFLECT [Liu+, CoRL23] 事前に定義された物体の状態に基づき成否判定 [Liu+, ICRA24] 将来の状態に関する潜在表現に基づくタスク成否予測 [Shirasaka+, ICRA24] [Liu+, ICRA24]
問題設定: オフライン⽣成された軌道に基づくタスク成否判定 - 5 - • ⼊⼒:指⽰⽂,1⼈称視点画像,エンドエフェクタの軌道 • 出⼒:物体操作に成功する確率の予測値 Success
Failure Status 0.8 0.2 「⽩いボウルから⾚いリンゴを取って」
提案⼿法: オフライン⽣成された軌道に基づくタスク成否予測機構 - 6 - 1. 軌道を埋め込み画像特徴量により条件付けを⾏うTrajectory Encoder 2. ⾃然⾔語指⽰⽂と軌道に関する特徴量のアラインメントを⾏う
Transformer Decoder
Trajectory Encoder: 軌道を埋め込み,画像による条件付け - 7 - ・ ・ ・ CNN
Pooling λ-Rep. Encoder [Goko+, CoRL24] • 前提 軌道は環境の状況に基づき⽣成 される 1⼈称画像と軌道の特徴量の 対応づけが有効 • 獲得した特徴量はCross- Attention機構により⾔語特徴量 とアラインメント
定量的結果:ベースライン⼿法を精度において上回った - 8 - ▪ SP-RT-1データセット(13Kエピソード,[Goko+, CoRL24])において評価 ▪ w/o CNN:
Trajectory EncoderのCNNをLinearに変更 モデル 精度 [%] 齋藤ら [齋藤+, JSAI24] 74.9±0.79 提案⼿法 w/o CNN 83.2±0.48 提案⼿法 83.4±0.65 “pick orange can from bottom drawer and place on counter” Trajectory Encoderの構造の有効性も確認
定性的結果 (1/2): タスクに対して適切な軌道であることを理解 - 9 - “Place rxbar chocolate into
middle drawer” ▪ チョコレート菓⼦を適切に引き出しに格納 J 適切にタスクの成功を予測
定性的結果 (2/2):物体の位置関係について適切に考慮 - 10 - ▪ オレンジ⽸を動かそうとしている & 倒してしまった “Move
green rice chip bag near orange can” J 適切にタスクの失敗を予測
まとめ - 11 - ▪ 物体操作における,エンドエフェクタの軌道に基づくタスク成否予測 ▪ 新規性 1. 軌道を埋め込み画像特徴量により条件付けを⾏うTrajectory
Encoderの導⼊ 2. ⾃然⾔語指⽰⽂と軌道に関する特徴量のアラインメントを⾏う Transformer Decoder ▪ 精度においてベースライン⼿法を上回った 10x