Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Argo Workflow によるMLジョブ管理
Search
Livesense Inc.
PRO
March 27, 2019
Technology
2
830
Argo Workflow によるMLジョブ管理
MACHINE LEARNING Meetup KANSAI #4
2019/3/27
Livesense Inc.
PRO
March 27, 2019
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
9
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
13
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.4k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
380
26新卒_総合職採用_会社説明資料
livesense
PRO
0
8.7k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
26k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
12k
中途セールス職_会社説明資料
livesense
PRO
0
250
EM候補者向け転職会議説明資料
livesense
PRO
0
120
Other Decks in Technology
See All in Technology
より良いプロダクトの開発を目指して - 情報を中心としたプロダクト開発 #phpcon #phpcon2025
bengo4com
1
3.1k
本が全く読めなかった過去の自分へ
genshun9
0
300
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
730
AWS アーキテクチャ作図入門/aws-architecture-diagram-101
ma2shita
29
11k
Windows 11 で AWS Documentation MCP Server 接続実践/practical-aws-documentation-mcp-server-connection-on-windows-11
emiki
0
960
フィンテック養成勉強会#54
finengine
0
180
M3 Expressiveの思想に迫る
chnotchy
0
100
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
3
290
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
260
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
180
2025-06-26_Lightning_Talk_for_Lightning_Talks
_hashimo2
2
100
Clineを含めたAIエージェントを 大規模組織に導入し、投資対効果を考える / Introducing AI agents into your organization
i35_267
4
1.6k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
Rails Girls Zürich Keynote
gr2m
94
14k
Raft: Consensus for Rubyists
vanstee
140
7k
Site-Speed That Sticks
csswizardry
10
660
4 Signs Your Business is Dying
shpigford
184
22k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How to Ace a Technical Interview
jacobian
277
23k
Designing for humans not robots
tammielis
253
25k
Docker and Python
trallard
44
3.4k
Transcript
Argo Workflow ʹΑΔMLδϣϒཧ Shotaro Tanaka / @yubessy / Ϧϒηϯε (ژΦϑΟε)
MACHINE LEARNING Meetup KANSAI #4 LT
͜Εͷհ͠·͢
https://argoproj.github.io/
Կ͕Ͱ͖Δͷ͔ "Container native workflow engine for Kubernetes" • ෳͷίϯςφΛྻ/ฒྻ࣮ߦ͢ΔϫʔΫϑϩʔΛఆٛͰ͖Δ •
σʔλύΠϓϥΠϯ, CI/CD ͳͲͷར༻Λఆ • ৽όʔδϣϯͰ DAG αϙʔτ • Argo ϕʔεͷ༷ʑͳϓϩμΫτ • Argo CD: GitOps ʹΑΔ CD Λ࣮ݱ • Argo Event: ϫʔΫϑϩʔͷτϦΨ
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: ml-workflow- spec: entrypoint: main
templates: - name: main steps: - - name: load-dataset template: load-dataset - - name: train-model-1 template: train-model arguments: parameters: [{name: model, value: model1}] - name: train-model-2 template: train-model arguments: parameters: [{name: model, value: model2}] ...
... - name: load-dataset container: image: postgres:latest command: [sh, -c]
args: ["psql db -c 'SELECT * FROM dataset' -A -F, > dataset.csv"] - name: train-model inputs: parameters: [{name: model}] container: image: train-model command: [sh -c] args: ["python train_model.py --model={{inputs.parameters.model}}"]
None
ͳͥ͏ͷ͔ ʮϞσϧ͕Ͱ͖ͨͷͰɺαΫοͱӡ༻ʹ͍ͤͨʯ • MLϞσϧͷ։ൃऀ • SQL Ͱσʔλऔಘ ʙ Ϟσϧ༧ଌΛϑΝΠϧʹग़ྗ •
Docker Ͱಈ͘Α͏ʹ͓ͯ͘͠ • MLγεςϜͷ։ൃऀ • DBIO Ϟσϧɾ༧ଌ݁ՌͷσϦόϦॲཧΛ࣮ • Argo Ͱͯ͢ΛΈ߹ΘͤͨϫʔΫϑϩʔΛ࡞Δ → ίϯςφ୯ҐͰׂ୲
ϦϒηϯεͰͷར༻ྫ • ग़ྗͷDBॻ͖ࠐΈॲཧͷ • Ϟσϧͷ Continuous Delivery • ฒߦॲཧ
ग़ྗͷDBॻ͖ࠐΈॲཧͷ • ٻਓαΠτͷݕࡧॱҐ੍ޚ༻༧ଌϞσϧ • όονͰֶशɾ༧ଌ͠ग़ྗΛDBʹॻ͖ࠐΈ • Ϟσϧͷ։ൃऀCSVग़ྗ·Ͱ࣮ͯ͠ Docker Խ͓ͯ͘͠ •
ॻ͖ࠐΈॲཧΫϨσϯγϟϧཧγεςϜͷ։ൃऀ͕࣮ steps: - - name: train-model # MLϞσϧͷ։ൃऀ͕࣮ - - name: predict-rates # MLϞσϧͷ։ൃऀ͕࣮ (ग़ྗCSV) - - name: import-to-db # MLγεςϜͷ։ൃऀ͕࣮ # ※ग़ྗϑΝΠϧڞ༗ϘϦϡʔϜͰड͚͠
Ϟσϧͷ Continuous Delivery • Ӧۀઓུɾࠂग़ߘΛఆͨ͠ٻਓޮՌਪఆϞσϧ • ϚʔέςΟϯά୲ऀ͚ͷϏϡʔϫΛ R-Shiny Ͱ։ൃɾӡ༻ •
ਪఆॲཧ͕ྃ͢ΔͨͼʹϏϡʔϫΛσϓϩΠͯ͠ϞσϧΛߋ৽ steps: - - name: estimate # ਪఆॲཧ - - name: upload-model # ࡞͞ΕͨϞσϧΛετϨʔδʹอଘ - - name: update-viewer # ϏϡʔϫΛσϓϩΠ͢͠
Ϟσϧͷ Continuous Delivery (ଓ͖) • Ϗϡʔϫಉ͡ Kubernetes ΫϥελͰ Deployment ͱ͍ͯಈ͍͍ͯΔ
• kubectl set env Ͱ Deployment Λߋ৽͢Δ͜ͱͰ৽͍͠ϞσϧΛಡΈࠐΉ • Rolling Update ʹΑΓμϯλΠϜແ͠ͷϞσϧߋ৽Մೳ - name: update-viewer container: image: kubectl command: ["sh", "-c"] args: ["kubectl set env deployment/viewer-app MODEL={{workflow.parameters.model}}"]
ฒߦॲཧ • WebςετͷଟόϯσΟοτ࠷దԽͷॏΈߋ৽δϣϒ • ෳͷςετ͕͓ͬͯΓɺ֤ςετͷਪఆॲཧฒߦ࣮ߦ͍ͨ͠ steps: - - name: list-experiments
# ਪఆॲཧ͕ඞཁͳςετΛϦετΞοϓ - - name: calc-weights # ͜ΕΛϦετΞοϓ͞Εͨςετͷ͚ͩฒߦ࣮ߦ͢Δ # ग़ྗύϥϝʔλͷϦετΛ͢ͱͦͷ͚ͩίϯςφ্ཱ͕͕ͪΔ # Ϧετ [{"experimentId": 1}, {"experimentId": 2}] ͷΑ͏ͳ JSON withParams: "{{steps.list-experiments.outputs.parameters.experiments}}" # Ϧετͷ֤ΞΠςϜ͔ΒύϥϝʔλΛऔΓग़ͯ͢͠ arguments: parameters: [{name: experimentId, value: "{{item.experimentId}}"}]
ฒߦॲཧ (ଓ͖) templates: - name: list-experiments container: ... outputs: parameters:
- name: experiments # ग़ྗύϥϝʔλͷϦετΛϑΝΠϧࢦఆ valueFrom: {path: /output/experiments.json} - name: calc-weights container: ... inputs: parameters: # ύϥϝʔλΛೖྗͱͯ͠ड͚औΔ - name: experimentId
None
·ͱΊ • ෳίϯςφ͔ΒͳΔϫʔΫϑϩʔΛ؆୯ʹΊΔ • ͭͬͨ͘MLϞσϧΛ͘͢ӡ༻͍ͨ͠ͱ͖ʹศར هࣄ͋Γ·͢: Argo ʹΑΔίϯςφωΠςΟϒͳσʔλύΠϓϥΠϯͷϫʔΫϑϩʔཧ