Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Argo Workflow によるMLジョブ管理
Search
Livesense Inc.
PRO
March 27, 2019
Technology
2
810
Argo Workflow によるMLジョブ管理
MACHINE LEARNING Meetup KANSAI #4
2019/3/27
Livesense Inc.
PRO
March 27, 2019
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.2k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
320
26新卒_総合職採用_会社説明資料
livesense
PRO
0
6.5k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
18k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
9.9k
中途セールス職_会社説明資料
livesense
PRO
0
220
EM候補者向け転職会議説明資料
livesense
PRO
0
100
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
230
転職会議でGPT-3を活用した企業口コミ要約機能をリリースした話
livesense
PRO
0
1.3k
Other Decks in Technology
See All in Technology
3月のAWSアップデートを5分間でざっくりと!
kubomasataka
0
130
意思決定を支える検索体験を目指してやってきたこと
hinatades
PRO
0
260
Winning at PHP in Production in 2025
beberlei
1
150
バックオフィス向け toB SaaS バクラクにおけるレコメンド技術活用 / recommender-systems-in-layerx-bakuraku
yuya4
5
570
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
250
Making a MIDI controller device with PicoRuby/R2P2 (RubyKaigi 2025 LT)
risgk
1
310
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
2
260
AWSのマルチアカウント管理 ベストプラクティス最新版 2025 / Multi-Account management on AWS best practice 2025
ohmura
4
320
テストって楽しい!開発を加速させるテストの魅力 / Testing is Fun! The Fascinating of Testing to Accelerate Development
aiandrox
0
110
watsonx.data上のベクトル・データベース Milvusを見てみよう/20250418-milvus-dojo
mayumihirano
0
120
白金鉱業Meetup_Vol.18_生成AIはデータサイエンティストを代替するのか?
brainpadpr
3
150
Databricksで完全履修!オールインワンレイクハウスは実在した!
akuwano
0
110
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
A better future with KSS
kneath
239
17k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.4k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Documentation Writing (for coders)
carmenintech
69
4.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Scaling GitHub
holman
459
140k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Code Reviewing Like a Champion
maltzj
522
40k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.6k
Transcript
Argo Workflow ʹΑΔMLδϣϒཧ Shotaro Tanaka / @yubessy / Ϧϒηϯε (ژΦϑΟε)
MACHINE LEARNING Meetup KANSAI #4 LT
͜Εͷհ͠·͢
https://argoproj.github.io/
Կ͕Ͱ͖Δͷ͔ "Container native workflow engine for Kubernetes" • ෳͷίϯςφΛྻ/ฒྻ࣮ߦ͢ΔϫʔΫϑϩʔΛఆٛͰ͖Δ •
σʔλύΠϓϥΠϯ, CI/CD ͳͲͷར༻Λఆ • ৽όʔδϣϯͰ DAG αϙʔτ • Argo ϕʔεͷ༷ʑͳϓϩμΫτ • Argo CD: GitOps ʹΑΔ CD Λ࣮ݱ • Argo Event: ϫʔΫϑϩʔͷτϦΨ
apiVersion: argoproj.io/v1alpha1 kind: Workflow metadata: generateName: ml-workflow- spec: entrypoint: main
templates: - name: main steps: - - name: load-dataset template: load-dataset - - name: train-model-1 template: train-model arguments: parameters: [{name: model, value: model1}] - name: train-model-2 template: train-model arguments: parameters: [{name: model, value: model2}] ...
... - name: load-dataset container: image: postgres:latest command: [sh, -c]
args: ["psql db -c 'SELECT * FROM dataset' -A -F, > dataset.csv"] - name: train-model inputs: parameters: [{name: model}] container: image: train-model command: [sh -c] args: ["python train_model.py --model={{inputs.parameters.model}}"]
None
ͳͥ͏ͷ͔ ʮϞσϧ͕Ͱ͖ͨͷͰɺαΫοͱӡ༻ʹ͍ͤͨʯ • MLϞσϧͷ։ൃऀ • SQL Ͱσʔλऔಘ ʙ Ϟσϧ༧ଌΛϑΝΠϧʹग़ྗ •
Docker Ͱಈ͘Α͏ʹ͓ͯ͘͠ • MLγεςϜͷ։ൃऀ • DBIO Ϟσϧɾ༧ଌ݁ՌͷσϦόϦॲཧΛ࣮ • Argo Ͱͯ͢ΛΈ߹ΘͤͨϫʔΫϑϩʔΛ࡞Δ → ίϯςφ୯ҐͰׂ୲
ϦϒηϯεͰͷར༻ྫ • ग़ྗͷDBॻ͖ࠐΈॲཧͷ • Ϟσϧͷ Continuous Delivery • ฒߦॲཧ
ग़ྗͷDBॻ͖ࠐΈॲཧͷ • ٻਓαΠτͷݕࡧॱҐ੍ޚ༻༧ଌϞσϧ • όονͰֶशɾ༧ଌ͠ग़ྗΛDBʹॻ͖ࠐΈ • Ϟσϧͷ։ൃऀCSVग़ྗ·Ͱ࣮ͯ͠ Docker Խ͓ͯ͘͠ •
ॻ͖ࠐΈॲཧΫϨσϯγϟϧཧγεςϜͷ։ൃऀ͕࣮ steps: - - name: train-model # MLϞσϧͷ։ൃऀ͕࣮ - - name: predict-rates # MLϞσϧͷ։ൃऀ͕࣮ (ग़ྗCSV) - - name: import-to-db # MLγεςϜͷ։ൃऀ͕࣮ # ※ग़ྗϑΝΠϧڞ༗ϘϦϡʔϜͰड͚͠
Ϟσϧͷ Continuous Delivery • Ӧۀઓུɾࠂग़ߘΛఆͨ͠ٻਓޮՌਪఆϞσϧ • ϚʔέςΟϯά୲ऀ͚ͷϏϡʔϫΛ R-Shiny Ͱ։ൃɾӡ༻ •
ਪఆॲཧ͕ྃ͢ΔͨͼʹϏϡʔϫΛσϓϩΠͯ͠ϞσϧΛߋ৽ steps: - - name: estimate # ਪఆॲཧ - - name: upload-model # ࡞͞ΕͨϞσϧΛετϨʔδʹอଘ - - name: update-viewer # ϏϡʔϫΛσϓϩΠ͢͠
Ϟσϧͷ Continuous Delivery (ଓ͖) • Ϗϡʔϫಉ͡ Kubernetes ΫϥελͰ Deployment ͱ͍ͯಈ͍͍ͯΔ
• kubectl set env Ͱ Deployment Λߋ৽͢Δ͜ͱͰ৽͍͠ϞσϧΛಡΈࠐΉ • Rolling Update ʹΑΓμϯλΠϜແ͠ͷϞσϧߋ৽Մೳ - name: update-viewer container: image: kubectl command: ["sh", "-c"] args: ["kubectl set env deployment/viewer-app MODEL={{workflow.parameters.model}}"]
ฒߦॲཧ • WebςετͷଟόϯσΟοτ࠷దԽͷॏΈߋ৽δϣϒ • ෳͷςετ͕͓ͬͯΓɺ֤ςετͷਪఆॲཧฒߦ࣮ߦ͍ͨ͠ steps: - - name: list-experiments
# ਪఆॲཧ͕ඞཁͳςετΛϦετΞοϓ - - name: calc-weights # ͜ΕΛϦετΞοϓ͞Εͨςετͷ͚ͩฒߦ࣮ߦ͢Δ # ग़ྗύϥϝʔλͷϦετΛ͢ͱͦͷ͚ͩίϯςφ্ཱ͕͕ͪΔ # Ϧετ [{"experimentId": 1}, {"experimentId": 2}] ͷΑ͏ͳ JSON withParams: "{{steps.list-experiments.outputs.parameters.experiments}}" # Ϧετͷ֤ΞΠςϜ͔ΒύϥϝʔλΛऔΓग़ͯ͢͠ arguments: parameters: [{name: experimentId, value: "{{item.experimentId}}"}]
ฒߦॲཧ (ଓ͖) templates: - name: list-experiments container: ... outputs: parameters:
- name: experiments # ग़ྗύϥϝʔλͷϦετΛϑΝΠϧࢦఆ valueFrom: {path: /output/experiments.json} - name: calc-weights container: ... inputs: parameters: # ύϥϝʔλΛೖྗͱͯ͠ड͚औΔ - name: experimentId
None
·ͱΊ • ෳίϯςφ͔ΒͳΔϫʔΫϑϩʔΛ؆୯ʹΊΔ • ͭͬͨ͘MLϞσϧΛ͘͢ӡ༻͍ͨ͠ͱ͖ʹศར هࣄ͋Γ·͢: Argo ʹΑΔίϯςφωΠςΟϒͳσʔλύΠϓϥΠϯͷϫʔΫϑϩʔཧ