Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gurobi Machine Learning 1 因果推論とアップリフトモデリング
Search
NearMeの技術発表資料です
PRO
June 16, 2023
Research
0
310
Gurobi Machine Learning 1 因果推論とアップリフトモデリング
NearMeの技術発表資料です
PRO
June 16, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
250
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
25
ローカルLLM
nearme_tech
PRO
0
45
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
28
Box-Muller法
nearme_tech
PRO
1
40
Kiro触ってみた
nearme_tech
PRO
0
350
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
590
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
140
Other Decks in Research
See All in Research
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
390
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
490
音声感情認識技術の進展と展望
nagase
0
430
2025-11-21-DA-10th-satellite
yegusa
0
100
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
590
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
470
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
120
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
Language Models Are Implicitly Continuous
eumesy
PRO
0
370
Featured
See All Featured
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
The untapped power of vector embeddings
frankvandijk
1
1.5k
Docker and Python
trallard
47
3.7k
Side Projects
sachag
455
43k
A Tale of Four Properties
chriscoyier
162
23k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
47
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
230
Transcript
0 Gurobi Machine Learning 1 因果推論とアップリフトモデリング 2023-06-16 第49回NearMe技術勉強会 @yujiosaka
1 機械学習
2 既知のデータを学習することで、未知のデータについて予測すること 機械学習のおさらい x1とx2の2 変数だけを使って、 メールをSPAMかHAMかに分類したい • x1: 文字化けの数 •
x2: 文中の「おめでとう」の回数 として、以下の分類ができる f(x) > 0: SPAM f(x) < 0: HAM
3 教師あり • 分類 ◦ スパムフィルタ ◦ 画像認識 • 回帰
◦ 株価予測 ◦ 不動産価格予測 教師なし • クラスタリング • GAN(Generative Adversarial Netrowk) 機械学習の分類
4 • 治療を行うことで患者が回復するかどうか • 奨学金を与えることで入学率が向上するかどうか • 割引することで売上が伸ばせるかどうか • etc. リスク
コスト コスト 介入操作が行われる分野 因果推論は、リスクやコストを伴う介入を行う分野とその研究 リスクやコストを最小限に抑えつつ、効果を最大化させたい
5 普通の予測と何が違うのか?
6 因果推論の根本問題 https://ja.wikipedia.org/wiki/%E7%9B%B8%E9%96%A2%E9%96%A2%E4%BF%82%E3%81%A8%E5%9B%A0%E6%9E%9C% E9%96%A2%E4%BF%82
7 アップリフトモデリング
8 対象を4章限に分類 この象限内の対象を分類したい
9 • 「勉強したらテストに合格した」という観測からは 「勉強しなかったらテストに合格しなかった」のかはわからない • 後からこの学生は、「Persuadable」か「Sure Things」かは分類できない • ABテストを行えば、統計的に分類することは可能 •
実用的には、「Persuadable」の分類予測が行えれば十分なことが多い 解説 ABテストを必須としない方法も研究されている 勉強したから合格した 勉強してもしなくても合格した 誰に勉強させる(Treatment)べきかを知りたい
10 勉強した学生(Treated)としなかった学生(Control)の2つのグループにランダムに分ける ①勉強した学生(Treated)を対象に、 過去の成績等のデータから「(勉強した場合の)合格率」を予想するモデルを構築 ②勉強しなかった学生(Control)を対象に、 過去の成績等のデータから「(勉強しなかった場合の)合格率」を予想するモデルを構築 2モデル 過去の成績が分かっている新たな学生に対し、「① - ②
> 0」であれば、 その学生は勉強することで合格率が上がるだろうと予測できる コストの高い勉強(塾に通わせる等)であれば、「① - ②」の差が より大きい学生だけに介入するといった応用もできる
11 • パラメータチューニングが難しくなる • 予測時の計算量が2倍になる • 特徴量の解釈が難しくなる 2モデルの問題点 → それぞれ異なるチューニングをして問題ないかは判断が難しい
→ 一度実行すればいい学習と違って、予測時の計算量は直接サーバーコストに影響する → 2つの学習結果で全く異なる特徴が抽出されてしまう
12 変数Zを導入して、教師として学習 Pythonコード例 1モデル // 学習データ df = pd.DataFrame({ 'y':
[1, 0, 1, 0], //合格したか?(response) 't': [1, 1, 0, 0], // 勉強したか?(treatment) 'x1': [0.2, 0.8, 0.3, 0.4], 'x2': [0.4, 0.4, 0.2, 0.2] }) x = df[['x1', 'x2']] z = 1 - (df['y'] ^ df['t']) // z = [1, 0, 0, 1] model.fit(x, z) // どんな分類器でも可
13 介入の回数や予算に制約がある場合に効果を最大化させたい 例: 試験に合格したn人の学生に対して、奨学金を配ることで入学する学生数を最大化させたい。 ただし、奨学金には予算上限があり、1人あたり250万円以内、n*0.2人までにしか配れない。 どの学生に対して奨学金をどれだけ配るべきか? アップリフトモデリングが答えてくれない問題 数理最適化と機械学習の統合が必要 → 次回
Gurobi Machine Learning を解説
14 • Decision trees for uplift modeling 参考資料
15 Thank you