Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gurobi Machine Learning 1 因果推論とアップリフトモデリング
Search
NearMeの技術発表資料です
PRO
June 16, 2023
Research
0
210
Gurobi Machine Learning 1 因果推論とアップリフトモデリング
NearMeの技術発表資料です
PRO
June 16, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
6
リファクタリングのための第一歩
nearme_tech
PRO
0
29
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
75
確率的プログラミング入門
nearme_tech
PRO
2
69
Observability and OpenTelemetry
nearme_tech
PRO
2
35
観察研究における因果推論
nearme_tech
PRO
1
100
React
nearme_tech
PRO
2
41
Architecture Decision Record (ADR)
nearme_tech
PRO
1
860
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
62
Other Decks in Research
See All in Research
12
0325
0
200
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
120
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
280
Neural Fieldの紹介
nnchiba
1
420
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
350
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
130
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
200
Language is primarily a tool for communication rather than thought
ryou0634
4
790
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
5
1.7k
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
140
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
250
TransformerによるBEV Perception
hf149
1
590
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
Music & Morning Musume
bryan
46
6.2k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
The Pragmatic Product Professional
lauravandoore
32
6.3k
Designing for humans not robots
tammielis
250
25k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
The Cult of Friendly URLs
andyhume
78
6.1k
Transcript
0 Gurobi Machine Learning 1 因果推論とアップリフトモデリング 2023-06-16 第49回NearMe技術勉強会 @yujiosaka
1 機械学習
2 既知のデータを学習することで、未知のデータについて予測すること 機械学習のおさらい x1とx2の2 変数だけを使って、 メールをSPAMかHAMかに分類したい • x1: 文字化けの数 •
x2: 文中の「おめでとう」の回数 として、以下の分類ができる f(x) > 0: SPAM f(x) < 0: HAM
3 教師あり • 分類 ◦ スパムフィルタ ◦ 画像認識 • 回帰
◦ 株価予測 ◦ 不動産価格予測 教師なし • クラスタリング • GAN(Generative Adversarial Netrowk) 機械学習の分類
4 • 治療を行うことで患者が回復するかどうか • 奨学金を与えることで入学率が向上するかどうか • 割引することで売上が伸ばせるかどうか • etc. リスク
コスト コスト 介入操作が行われる分野 因果推論は、リスクやコストを伴う介入を行う分野とその研究 リスクやコストを最小限に抑えつつ、効果を最大化させたい
5 普通の予測と何が違うのか?
6 因果推論の根本問題 https://ja.wikipedia.org/wiki/%E7%9B%B8%E9%96%A2%E9%96%A2%E4%BF%82%E3%81%A8%E5%9B%A0%E6%9E%9C% E9%96%A2%E4%BF%82
7 アップリフトモデリング
8 対象を4章限に分類 この象限内の対象を分類したい
9 • 「勉強したらテストに合格した」という観測からは 「勉強しなかったらテストに合格しなかった」のかはわからない • 後からこの学生は、「Persuadable」か「Sure Things」かは分類できない • ABテストを行えば、統計的に分類することは可能 •
実用的には、「Persuadable」の分類予測が行えれば十分なことが多い 解説 ABテストを必須としない方法も研究されている 勉強したから合格した 勉強してもしなくても合格した 誰に勉強させる(Treatment)べきかを知りたい
10 勉強した学生(Treated)としなかった学生(Control)の2つのグループにランダムに分ける ①勉強した学生(Treated)を対象に、 過去の成績等のデータから「(勉強した場合の)合格率」を予想するモデルを構築 ②勉強しなかった学生(Control)を対象に、 過去の成績等のデータから「(勉強しなかった場合の)合格率」を予想するモデルを構築 2モデル 過去の成績が分かっている新たな学生に対し、「① - ②
> 0」であれば、 その学生は勉強することで合格率が上がるだろうと予測できる コストの高い勉強(塾に通わせる等)であれば、「① - ②」の差が より大きい学生だけに介入するといった応用もできる
11 • パラメータチューニングが難しくなる • 予測時の計算量が2倍になる • 特徴量の解釈が難しくなる 2モデルの問題点 → それぞれ異なるチューニングをして問題ないかは判断が難しい
→ 一度実行すればいい学習と違って、予測時の計算量は直接サーバーコストに影響する → 2つの学習結果で全く異なる特徴が抽出されてしまう
12 変数Zを導入して、教師として学習 Pythonコード例 1モデル // 学習データ df = pd.DataFrame({ 'y':
[1, 0, 1, 0], //合格したか?(response) 't': [1, 1, 0, 0], // 勉強したか?(treatment) 'x1': [0.2, 0.8, 0.3, 0.4], 'x2': [0.4, 0.4, 0.2, 0.2] }) x = df[['x1', 'x2']] z = 1 - (df['y'] ^ df['t']) // z = [1, 0, 0, 1] model.fit(x, z) // どんな分類器でも可
13 介入の回数や予算に制約がある場合に効果を最大化させたい 例: 試験に合格したn人の学生に対して、奨学金を配ることで入学する学生数を最大化させたい。 ただし、奨学金には予算上限があり、1人あたり250万円以内、n*0.2人までにしか配れない。 どの学生に対して奨学金をどれだけ配るべきか? アップリフトモデリングが答えてくれない問題 数理最適化と機械学習の統合が必要 → 次回
Gurobi Machine Learning を解説
14 • Decision trees for uplift modeling 参考資料
15 Thank you