Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IWLS call 17 July (11 AM 18 July NZ)
Search
Nicolas Fauchereau
July 17, 2014
Science
0
53
IWLS call 17 July (11 AM 18 July NZ)
some thoughts on the collaborative paper on ML approaches to seasonal MSLA forecasting
Nicolas Fauchereau
July 17, 2014
Tweet
Share
More Decks by Nicolas Fauchereau
See All by Nicolas Fauchereau
ICU_189
nicolasf
0
75
ICU_188
nicolasf
0
100
ICU_187
nicolasf
0
71
ICU_186
nicolasf
0
78
Seminar MJO Hamilton
nicolasf
0
54
ICU_185
nicolasf
0
53
ICU_184
nicolasf
1
90
ICU_183
nicolasf
0
96
ICU_182_NDJ_2016
nicolasf
0
89
Other Decks in Science
See All in Science
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
140
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
390
データマイニング - ノードの中心性
trycycle
PRO
0
130
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
390
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
500
SpatialBiologyWestCoastUS2024
lcolladotor
0
140
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
160
機械学習 - DBSCAN
trycycle
PRO
0
920
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
160
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
550
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
180
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
72
4.9k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Practical Orchestrator
shlominoach
189
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
How to Ace a Technical Interview
jacobian
277
23k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
Visualization
eitanlees
146
16k
For a Future-Friendly Web
brad_frost
179
9.8k
Become a Pro
speakerdeck
PRO
29
5.4k
BBQ
matthewcrist
89
9.7k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
IWLS call 17 July Nicolas Fauchereau Sco6
Stephens
Agenda • Opera>onal forecas>ng and ensembles (Rashed)
• Paper collabora>on (Nico / Sco6 [NIWA])
Paper collabora>on • Suggested )tle: Machine Learning approaches
to the predic1on of seasonal Mean Sea Level Anomalies in the Pacific • To be submi0ed to: ? • Authors: Nicolas Fauchereau, Sco> Stephens, Judith Wells, Rashed Chowdhury, John Marra, William Sweet, Doug Ramsay, ???
Paper structure • Introduc)on – Extreme sea level
– Societal benefits of opera>onal extreme sea level risk calendar – Review of exis>ng ini>a>ves – interest of (sta>s>cal) ML predic>on: Open-‐source, lightweight – … – Possible approaches: • EVT • Signal Decomposi)on (trend + )de + MSLA + high-‐frequency), and forecast individual components • Data and methods – Data sources – Data processing (predictors / predictands) – ML algorithms – Model evalua>on (cross-‐valida>on and metrics) • Results – Regression • OLS • MARS • NN – Classifica>ons • LDA • SVM • RF • Conclusions
• Introduc>on: – Everyone, John leading
• Data and Methods: – Data (predictand): sources, QC, decomposi>on: Judith, Sco>, Rashed – Data (predictand): discre>za>on for classifica>on: Nico – Data (SST): sources, decomposi>on (EOF, ICA): Nico – Methods: ML algorithms, cross-‐valida>on, metrics: Nico, Sco> (NN), Judith, Rashed (LDA) • Results – Regression: • OLS: Nico, Judith • MARS: Nico • NN: Sco6 – Classifica>on • LDA: Rashed, Nico • SVM: Nico • RF: Nico Who does what ?
• Google docs ? • GIT ? •
Other ? How to collaborate ?