Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IWLS call 17 July (11 AM 18 July NZ)
Search
Nicolas Fauchereau
July 17, 2014
Science
0
53
IWLS call 17 July (11 AM 18 July NZ)
some thoughts on the collaborative paper on ML approaches to seasonal MSLA forecasting
Nicolas Fauchereau
July 17, 2014
Tweet
Share
More Decks by Nicolas Fauchereau
See All by Nicolas Fauchereau
ICU_189
nicolasf
0
75
ICU_188
nicolasf
0
100
ICU_187
nicolasf
0
71
ICU_186
nicolasf
0
78
Seminar MJO Hamilton
nicolasf
0
54
ICU_185
nicolasf
0
53
ICU_184
nicolasf
1
92
ICU_183
nicolasf
0
96
ICU_182_NDJ_2016
nicolasf
0
89
Other Decks in Science
See All in Science
データベース03: 関係データモデル
trycycle
PRO
1
140
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
520
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
200
データベース02: データベースの概念
trycycle
PRO
2
790
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
550
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
160
2025-06-11-ai_belgium
sofievl
1
140
Lean4による汎化誤差評価の形式化
milano0017
1
280
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
500
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
110
機械学習 - pandas入門
trycycle
PRO
0
290
Featured
See All Featured
Writing Fast Ruby
sferik
628
62k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
A Tale of Four Properties
chriscoyier
160
23k
Navigating Team Friction
lara
187
15k
How GitHub (no longer) Works
holman
314
140k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Why Our Code Smells
bkeepers
PRO
337
57k
Building Adaptive Systems
keathley
43
2.7k
Done Done
chrislema
184
16k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Transcript
IWLS call 17 July Nicolas Fauchereau Sco6
Stephens
Agenda • Opera>onal forecas>ng and ensembles (Rashed)
• Paper collabora>on (Nico / Sco6 [NIWA])
Paper collabora>on • Suggested )tle: Machine Learning approaches
to the predic1on of seasonal Mean Sea Level Anomalies in the Pacific • To be submi0ed to: ? • Authors: Nicolas Fauchereau, Sco> Stephens, Judith Wells, Rashed Chowdhury, John Marra, William Sweet, Doug Ramsay, ???
Paper structure • Introduc)on – Extreme sea level
– Societal benefits of opera>onal extreme sea level risk calendar – Review of exis>ng ini>a>ves – interest of (sta>s>cal) ML predic>on: Open-‐source, lightweight – … – Possible approaches: • EVT • Signal Decomposi)on (trend + )de + MSLA + high-‐frequency), and forecast individual components • Data and methods – Data sources – Data processing (predictors / predictands) – ML algorithms – Model evalua>on (cross-‐valida>on and metrics) • Results – Regression • OLS • MARS • NN – Classifica>ons • LDA • SVM • RF • Conclusions
• Introduc>on: – Everyone, John leading
• Data and Methods: – Data (predictand): sources, QC, decomposi>on: Judith, Sco>, Rashed – Data (predictand): discre>za>on for classifica>on: Nico – Data (SST): sources, decomposi>on (EOF, ICA): Nico – Methods: ML algorithms, cross-‐valida>on, metrics: Nico, Sco> (NN), Judith, Rashed (LDA) • Results – Regression: • OLS: Nico, Judith • MARS: Nico • NN: Sco6 – Classifica>on • LDA: Rashed, Nico • SVM: Nico • RF: Nico Who does what ?
• Google docs ? • GIT ? •
Other ? How to collaborate ?