Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IWLS call 17 July (11 AM 18 July NZ)
Search
Nicolas Fauchereau
July 17, 2014
Science
0
53
IWLS call 17 July (11 AM 18 July NZ)
some thoughts on the collaborative paper on ML approaches to seasonal MSLA forecasting
Nicolas Fauchereau
July 17, 2014
Tweet
Share
More Decks by Nicolas Fauchereau
See All by Nicolas Fauchereau
ICU_189
nicolasf
0
82
ICU_188
nicolasf
0
110
ICU_187
nicolasf
0
74
ICU_186
nicolasf
0
80
Seminar MJO Hamilton
nicolasf
0
59
ICU_185
nicolasf
0
59
ICU_184
nicolasf
1
100
ICU_183
nicolasf
0
100
ICU_182_NDJ_2016
nicolasf
0
91
Other Decks in Science
See All in Science
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
150
KH Coderチュートリアル(スライド版)
koichih
1
54k
Algorithmic Aspects of Quiver Representations
tasusu
0
120
My Little Monster
juzishuu
0
300
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
研究って何だっけ / What is Research?
ks91
PRO
2
160
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
420
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
850
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
機械学習 - SVM
trycycle
PRO
1
940
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
240
Featured
See All Featured
Docker and Python
trallard
47
3.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
It's Worth the Effort
3n
187
29k
[SF Ruby Conf 2025] Rails X
palkan
0
520
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Building Applications with DynamoDB
mza
96
6.8k
Transcript
IWLS call 17 July Nicolas Fauchereau Sco6
Stephens
Agenda • Opera>onal forecas>ng and ensembles (Rashed)
• Paper collabora>on (Nico / Sco6 [NIWA])
Paper collabora>on • Suggested )tle: Machine Learning approaches
to the predic1on of seasonal Mean Sea Level Anomalies in the Pacific • To be submi0ed to: ? • Authors: Nicolas Fauchereau, Sco> Stephens, Judith Wells, Rashed Chowdhury, John Marra, William Sweet, Doug Ramsay, ???
Paper structure • Introduc)on – Extreme sea level
– Societal benefits of opera>onal extreme sea level risk calendar – Review of exis>ng ini>a>ves – interest of (sta>s>cal) ML predic>on: Open-‐source, lightweight – … – Possible approaches: • EVT • Signal Decomposi)on (trend + )de + MSLA + high-‐frequency), and forecast individual components • Data and methods – Data sources – Data processing (predictors / predictands) – ML algorithms – Model evalua>on (cross-‐valida>on and metrics) • Results – Regression • OLS • MARS • NN – Classifica>ons • LDA • SVM • RF • Conclusions
• Introduc>on: – Everyone, John leading
• Data and Methods: – Data (predictand): sources, QC, decomposi>on: Judith, Sco>, Rashed – Data (predictand): discre>za>on for classifica>on: Nico – Data (SST): sources, decomposi>on (EOF, ICA): Nico – Methods: ML algorithms, cross-‐valida>on, metrics: Nico, Sco> (NN), Judith, Rashed (LDA) • Results – Regression: • OLS: Nico, Judith • MARS: Nico • NN: Sco6 – Classifica>on • LDA: Rashed, Nico • SVM: Nico • RF: Nico Who does what ?
• Google docs ? • GIT ? •
Other ? How to collaborate ?