Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IWLS call 17 July (11 AM 18 July NZ)
Search
Nicolas Fauchereau
July 17, 2014
Science
0
54
IWLS call 17 July (11 AM 18 July NZ)
some thoughts on the collaborative paper on ML approaches to seasonal MSLA forecasting
Nicolas Fauchereau
July 17, 2014
Tweet
Share
More Decks by Nicolas Fauchereau
See All by Nicolas Fauchereau
ICU_189
nicolasf
0
90
ICU_188
nicolasf
0
110
ICU_187
nicolasf
0
74
ICU_186
nicolasf
0
81
Seminar MJO Hamilton
nicolasf
0
61
ICU_185
nicolasf
0
60
ICU_184
nicolasf
1
110
ICU_183
nicolasf
0
100
ICU_182_NDJ_2016
nicolasf
0
91
Other Decks in Science
See All in Science
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1.1k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
160
NDCG is NOT All I Need
statditto
2
2.8k
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
270
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
190
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
380
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
機械学習 - SVM
trycycle
PRO
1
980
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
230
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The Curious Case for Waylosing
cassininazir
0
240
So, you think you're a good person
axbom
PRO
2
1.9k
Marketing to machines
jonoalderson
1
4.6k
Building AI with AI
inesmontani
PRO
1
710
The Pragmatic Product Professional
lauravandoore
37
7.1k
Why Our Code Smells
bkeepers
PRO
340
58k
The SEO Collaboration Effect
kristinabergwall1
0
350
Technical Leadership for Architectural Decision Making
baasie
2
250
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Leo the Paperboy
mayatellez
4
1.4k
Transcript
IWLS call 17 July Nicolas Fauchereau Sco6
Stephens
Agenda • Opera>onal forecas>ng and ensembles (Rashed)
• Paper collabora>on (Nico / Sco6 [NIWA])
Paper collabora>on • Suggested )tle: Machine Learning approaches
to the predic1on of seasonal Mean Sea Level Anomalies in the Pacific • To be submi0ed to: ? • Authors: Nicolas Fauchereau, Sco> Stephens, Judith Wells, Rashed Chowdhury, John Marra, William Sweet, Doug Ramsay, ???
Paper structure • Introduc)on – Extreme sea level
– Societal benefits of opera>onal extreme sea level risk calendar – Review of exis>ng ini>a>ves – interest of (sta>s>cal) ML predic>on: Open-‐source, lightweight – … – Possible approaches: • EVT • Signal Decomposi)on (trend + )de + MSLA + high-‐frequency), and forecast individual components • Data and methods – Data sources – Data processing (predictors / predictands) – ML algorithms – Model evalua>on (cross-‐valida>on and metrics) • Results – Regression • OLS • MARS • NN – Classifica>ons • LDA • SVM • RF • Conclusions
• Introduc>on: – Everyone, John leading
• Data and Methods: – Data (predictand): sources, QC, decomposi>on: Judith, Sco>, Rashed – Data (predictand): discre>za>on for classifica>on: Nico – Data (SST): sources, decomposi>on (EOF, ICA): Nico – Methods: ML algorithms, cross-‐valida>on, metrics: Nico, Sco> (NN), Judith, Rashed (LDA) • Results – Regression: • OLS: Nico, Judith • MARS: Nico • NN: Sco6 – Classifica>on • LDA: Rashed, Nico • SVM: Nico • RF: Nico Who does what ?
• Google docs ? • GIT ? •
Other ? How to collaborate ?