Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IWLS call 17 July (11 AM 18 July NZ)
Search
Nicolas Fauchereau
July 17, 2014
Science
0
53
IWLS call 17 July (11 AM 18 July NZ)
some thoughts on the collaborative paper on ML approaches to seasonal MSLA forecasting
Nicolas Fauchereau
July 17, 2014
Tweet
Share
More Decks by Nicolas Fauchereau
See All by Nicolas Fauchereau
ICU_189
nicolasf
0
76
ICU_188
nicolasf
0
100
ICU_187
nicolasf
0
71
ICU_186
nicolasf
0
78
Seminar MJO Hamilton
nicolasf
0
54
ICU_185
nicolasf
0
57
ICU_184
nicolasf
1
98
ICU_183
nicolasf
0
96
ICU_182_NDJ_2016
nicolasf
0
89
Other Decks in Science
See All in Science
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
990
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1k
機械学習 - 授業概要
trycycle
PRO
0
250
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
270
学術講演会中央大学学員会府中支部
tagtag
0
310
高校生就活へのDA導入の提案
shunyanoda
0
6k
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
980
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
200
データベース03: 関係データモデル
trycycle
PRO
1
270
MCMCのR-hatは分散分析である
moricup
0
460
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
1
1k
Featured
See All Featured
Visualization
eitanlees
149
16k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Thoughts on Productivity
jonyablonski
70
4.9k
Scaling GitHub
holman
463
140k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How to Ace a Technical Interview
jacobian
280
24k
Transcript
IWLS call 17 July Nicolas Fauchereau Sco6
Stephens
Agenda • Opera>onal forecas>ng and ensembles (Rashed)
• Paper collabora>on (Nico / Sco6 [NIWA])
Paper collabora>on • Suggested )tle: Machine Learning approaches
to the predic1on of seasonal Mean Sea Level Anomalies in the Pacific • To be submi0ed to: ? • Authors: Nicolas Fauchereau, Sco> Stephens, Judith Wells, Rashed Chowdhury, John Marra, William Sweet, Doug Ramsay, ???
Paper structure • Introduc)on – Extreme sea level
– Societal benefits of opera>onal extreme sea level risk calendar – Review of exis>ng ini>a>ves – interest of (sta>s>cal) ML predic>on: Open-‐source, lightweight – … – Possible approaches: • EVT • Signal Decomposi)on (trend + )de + MSLA + high-‐frequency), and forecast individual components • Data and methods – Data sources – Data processing (predictors / predictands) – ML algorithms – Model evalua>on (cross-‐valida>on and metrics) • Results – Regression • OLS • MARS • NN – Classifica>ons • LDA • SVM • RF • Conclusions
• Introduc>on: – Everyone, John leading
• Data and Methods: – Data (predictand): sources, QC, decomposi>on: Judith, Sco>, Rashed – Data (predictand): discre>za>on for classifica>on: Nico – Data (SST): sources, decomposi>on (EOF, ICA): Nico – Methods: ML algorithms, cross-‐valida>on, metrics: Nico, Sco> (NN), Judith, Rashed (LDA) • Results – Regression: • OLS: Nico, Judith • MARS: Nico • NN: Sco6 – Classifica>on • LDA: Rashed, Nico • SVM: Nico • RF: Nico Who does what ?
• Google docs ? • GIT ? •
Other ? How to collaborate ?