Upgrade to Pro — share decks privately, control downloads, hide ads and more …

A Game Theoretic Approach for Managing Multi-Mo...

SciTech
January 14, 2015

A Game Theoretic Approach for Managing Multi-Modal Urban Mobility Systems

Collective adaptive systems provide secure and robust collaboration between heterogeneous entities such as humans and computer systems. Such entities have potentially conflicting goals that attempt to satisfy by interacting with each other. Understanding, predicting and designing their behavior and evolution requires the incorporation of technical, social and economic aspects in our models. In this presentation, we discuss cells and ensembles, a new design principle to study and construct collective adaptive systems, developed with our partners in the EU project “ALLOW ENSEMBLES”. We also show how to apply this principle in the study and design of an integrated and multimodal urban mobility system, where we model the interactions of various entities by means of game theoretic techniques.

SciTech

January 14, 2015
Tweet

More Decks by SciTech

Other Decks in Technology

Transcript

  1. A  Game  Theore+c  Approach  for   Managing  Mul+-­‐Modal  Urban  

    Mobility  Systems     Christos  Nikolaou   Marina  Bitsaki   Alina  Psycharaki   George  Koutras   Transforma+on  Services  Lab   Computer  Science  Department   University  of  Crete   13/01/2015   nikolau  @  tsl.gr   1  
  2. Table  of  Contents   •  Collec&ve  Adap&ve  Systems   • 

    The  ALLOW  ENSEMBLES  project   •  The  Strategic  Ensemble  Concept   •  The  FlexiBus  Scenario   •  Game  Theory:  Non-­‐coopera+ve  and   coopera+ve  games   •  Future  Work  -­‐  Publica+ons   13/01/2015   nikolau  @  tsl.gr   2  
  3. Collec+ve  Adap+ve  Systems  (CAS)   •  “Collec+ve  adap+ve  systems  consist

     of  many  autonomous  units  that   interact  in  a  variety  of  ways  over  mul+ple  scales”,   h[ps://www.elec.york.ac.uk/research/intSys/cas.html   •  Concept  similar  to:  complex  adap+ve  systems,  cyber-­‐physical  systems,   service  systems.   •  Autonomous  units  could  be  (cyber  and/or  physical)  systems  and/or   humans.   •  The  Internet  of  Things  (IoT)  helps  their  prolifera+on.   •  Collec&ons  of  autonomous  units  (networks,  hierarchies)  are  formed,  o]en   with  compe&ng  interests  (for  example  for  use  of  resources,  of  services,   etc.).   •  Various  concerns  (for  example  smarter  energy  use,  empowering  the   pa&ent  to  improve  quality  of  life,  environmentally  friendly  easy-­‐to-­‐use   urban  mobility)  could  be  addressed  if:   –  autonomous  units  (systems  and/or  humans)  of  CAS  learn  to  cooperate  and/or   compete,  nego&ate,  develop  strategies  to  achieve  goals.   13/01/2015   nikolau  @  tsl.gr   3  
  4. Examples  of  Collec+ve     Adap+ve  Systems   13/01/2015  

    nikolau  @  tsl.gr   4   Smart  Grid   Smart  Urban  Mobility   Smart  Health  Services  
  5. The  Urban  Mobility  Scenario     (Buses,  FlexiBuses,  Carpools,  Taxis,

     Passengers)   13/01/2015   nikolau  @  tsl.gr   5  
  6. Table  of  Contents   •  Collec+ve  Adap+ve  Systems   • 

    The  ALLOW  ENSEMBLES  project   •  The  Strategic  Ensemble  Concept   •  The  FlexiBus  Scenario   •  Game  Theory:  Non-­‐coopera+ve  and   coopera+ve  games   •  Future  Work  -­‐  Publica+ons   13/01/2015   nikolau  @  tsl.gr   6  
  7. The  ALLOW  ENSEMBLES  project   (Funded  by  FET  Proac+ve,  7FP,

     EC)   •  h[p://www.allow-­‐ensembles.eu/   13/01/2015   nikolau  @  tsl.gr   7   Allow  Ensembles  develops  new  models,  theories  and  algorithms  that  can:   •  Autonomously  form  large-­‐scale  collec+ve  adap+ve  units  (ensembles)  that     can  flexibly  sa+sfy  arbitrary  goals  in  the  real  world  environments.   •  Improve  the  u&lity  of  ensembles  by  adap+ng  the  individual  cells     within  an  ensemble  such  that  the  overall  system  learns  to  get  be[er     at  accomplishing  goals.   •  Make  ensembles  robust   •  Evolve  ensembles  in  order  to  promote  beneficial  emergent  proper+es     and  suppress  detrimental  emergent  proper+es.   •  Make  ensembles  secure  and  protect  sensi&ve  data  by  evolving     security  policies  in  unison  with  ensemble  evolu+on.  
  8. Basic  Concepts  -­‐  Cells   •  Cell:  a  unique  iden+fiable

     building  block  represen+ng   a  concrete  func+onality  in  a  larger,  mul+cellular   system.     •  Implemen+ng  the  func+onality  may  involve  interac+ng   with  other  cells  through  predefined  protocols.     •  Each  cell  is  therefore  defined  in  terms  of  its  protocol   (exposed  process  fragments)  and  behavior  (flow).     •  Cells  can  be  created  either  by  instan+a+ng  cell archetypes 1 , or  by  other  cells  through  the  process  of   differentiation.   (from  “Terminology”,  Internal  Document,  ALLOW   ENSEMBLES  consor+um).   13/01/2015   nikolau  @  tsl.gr   8  
  9. Basic  Concepts  –  Passenger  Trip   Booking  Cell  Archetype  Example

      13/01/2015   nikolau  @  tsl.gr   9   (from  “Terminology”,  Internal  Document,   ALLOW  ENSEMBLES  consor+um).  
  10. Basic  Concepts  -­‐  En++es   •  En&ty:  a  physical  or

     virtual  organiza+onal  unit  aggrega+ng  a  set  of   cells.     •  Cells  can  either  be  unique  in  an  en+ty,  or  they  can  be  replicated  by   the  en+ty  by  instan+a+ng  the  cell  archetype  as  many  +mes  as   necessary.  However,  each  cell  belongs  to  exactly  one  en+ty.     •  Each  en+ty  has  a  context  in  which  it  operates,  which  is  accessible  by   its  cells.     •  Furthermore,  an  en+ty  has  a  set  of  goals  that  it  a[empts  to  fulfill   by  ini+a+ng  or  par+cipa+ng  in  one  or  more  ensembles.   •  En+ty  Examples:  Bus  Driver,  Passenger,  Route  Manager  and  FlexiBus   Manager.   •  (from  “Terminology”,  Internal  Document,  ALLOW  ENSEMBLES   consor+um).   13/01/2015   nikolau  @  tsl.gr   10  
  11. Basic  Concepts  -­‐  Ensembles   •  Ensemble:  a  set  of

     cells  from  different  en++es   collabora+ng  with  each  other  to  fulfill  some  of  the   goals  of  the  en++es.     •  Each  ensemble  is  ini+ated  and  terminated  by  an  en+ty,   but  more  than  one  en++es  are  expected  and  allowed   to  join  and  leave  through  the  ensemble’s  life+me.   •  Ensemble  Example:  The  Bus  Driver,  Route  Manager  and   the  various  Passenger  en++es  are  par+cipa+ng  in  one   Route  ensemble   •  (from  “Terminology”,  Internal  Document,  ALLOW   ENSEMBLES  consor+um).   13/01/2015   nikolau  @  tsl.gr   11  
  12. En++es  Interac+ons       •  En++es  interact  in  order

     to  achieve     –  Individual  objec+ves   –  Group  objec+ves   •  Interac+ons  may:   –  Help  en++es  make  decisions  to  achieve  goals  (gather  info,  learn,  nego+ate,  op+mize,   par+cipate  in  games,  form  coal+ons,  etc.)   –  Implement  decisions  made  by  en++es  (make  payments,  step  in  a  bus,  schedule  a  bus,  etc.)   •  Interac+ons  result  in  the  crea+on  of     –  (execu+on)  ensembles  in  order  to  fulfill  specific  goals  ini+ated  by  the  en++es   –  Strategic  ensembles  in  order  to  handle  decision  making  and  increase  en++es’   sa+sfac+on  expressed  in  u+lity  terms   13/01/2015   nikolau  @  tsl.gr   13  
  13. Table  of  Contents   •  Collec+ve  Adap+ve  Systems   • 

    The  ALLOW  ENSEMBLES  project   •  The  Strategic  Ensemble  Concept   •  The  FlexiBus  Scenario   •  Game  Theory:  Non-­‐coopera+ve  and   coopera+ve  games   •  Future  Work  -­‐  Publica+ons   13/01/2015   nikolau  @  tsl.gr   14  
  14. The  Strategic  Ensembles  Model     •  A  strategic  ensemble

     model  uses  the  en++es’  u+lity-­‐cells   –  It  is  created  before  the  execu+on  ensemble     –  It  runs  in  parallel  to  the  execu+on  ensemble     –  It  affects  the  opera+ons  of  the  execu+on  ensemble   •  The  objec+ves  of  a  strategic  ensemble  include  the  following   –  Impose  constraints  according  to  en+ty  goals  and  preferences  in  order  to   reduce  the  various  choices  of  en++es     –  Assign  u+lity  to  each  en+ty  when  par+cipa+ng  in  an  ensemble  in  order  to   make  the  op+mal  choice   –  Manage  the  nego+a+on  among  en++es   13/01/2015   nikolau  @  tsl.gr   15  
  15. U+lity-­‐cells   •  Represent  u+lity  and  game  theore+c  characteris+cs  of

     en++es   •  The  u+lity-­‐cell  of  an  en+ty  has  the  following  func+onali+es   –  calculates  the  u+lity  of  an  en+ty  when  par+cipa+ng  in  a  given  ensemble   –  communicates  with  other  cells  and  makes  decisions/computes  strategies  of  the   en+ty   –  collects  data  from  measurements  (resource  consump+on,  sa+sfac+on,  costs,   delays,  prices,  …)  and  passes  them  to  the  Evo(lu+onary)  Knowledge  Data  Base   –  Consults  EvoKnowledge  (learns)  about  u+lity  func+on  parameters,  external   condi+ons  (for  example  changes  in  traffic  pa[erns,  special  events  in  city,  etc.).   –  runs  op+miza+on  algorithms  to  maximize  en++es’  u+lity  or  improve  the   performance  of  ensembles   13/01/2015   nikolau  @  tsl.gr   16  
  16. Strategic  Ensemble   Exec-­‐   cell U+lity-­‐ cell U+lity-­‐ cell

    Exec-­‐ cell Exec-­‐  cell Exec-­‐ cell   U+lity-­‐ cell Exec-­‐   cell Exec   cell U+lity-­‐ cell Exec-­‐cell U+lity-­‐   cell En&ty  2   En&ty  1   En&ty  3   En&ty  4   En&ty  5   En&ty  6   13/01/2015   nikolau  @  tsl.gr   17  
  17. Passenger     Passengers   U+lity-­‐ Cell U+lity-­‐Cell Cell Flexibus

        Manager   U+lity-­‐ Cell Example  Strategic  Ensemble     Route  Planner   Cell Cell tripRequest   rankedRoutes   tripRequest   listOfRoutes   U+lity-­‐ Cell Cell Cell nego+a+ons   Route  Manager   U+lity-­‐ Cell Cell FlexiBus     Driver   routeInfo   offer  
  18. Interac+ons   Exec   cell U+lity-­‐cell U+lity-­‐cell Exec-­‐ cell Evo-­‐cell

    Route  Planner   Strategic   Ensemble   Passenger     Evo-­‐cell
  19. Prior  Art   •  An  efficient  transporta+on  system  u+lizes  mass

     transit  alterna+ves  to  the   automobile  in  order  to  reduce  conges+on  and  support  ecological   solu+ons.     •  Travelers  make  decisions  based  on  +ming,  cost,  comfort,  safety  and  mode   of  trips,  while  planners  face  policy  ques+ons  such  as  frequency  of  routes,   i+neraries,  size,  cost,  environmental  impact,  etc.       •  (Lam,  Small,  2001):  a  method  to  value  travel  +me  and  its  reliability.    People   had  to  choose  between  two  parallel  routes,  one  free  but  congested  and   the  other  with  +me-­‐varying  tolls  by  maximizing  a  u+lity  func+on  (a   func+on  of  travel  +me,  variability  in  travel  +me,  cost,  characteris+cs  such   as  +me-­‐of-­‐day  and  car  occupancy,  and  a  random  component).       •  (Johansson  et  al.,  2003):  the  labor  market  commuter  behavior  is  analyzed   taking  into  account  the  observa+on  that  the  willingness  of  an  individual  to   commute  is  different  for  short,  medium  and  long  +me  distances.   13/01/2015   nikolau  @  tsl.gr   20  
  20. Prior  Art  (cont.)   •  (Li,    Huang,  2005):  reliability

     of  morning  commu+ng  in  congested  and  uncertain   transport  networks     •  Other  studies  analyze  the  interac+ons  between  commuters  and  planners  or   transport  managers  and  examine  how  commuters  choose  their  op+mal  routes  and   trip  modes  using  non-­‐coopera+ve  games.     •  (Sun,  Gao,  2007):  a  non-­‐coopera+ve,  perfect  informa+on,  sta+c  game  to  describe   how  travelers  adjust  their  route  choices  and  trip  modes.   •  (Anas,  Berliant,  2010):  the  authors  consider  a  commu+ng  network  consis+ng  of  a   finite  set  of  nodes  at  which  the  commuters  live  or  to  which  they  commute  or   through  which  they  commute  and  a  finite  set  of  transport  links  between  the  nodes   (there  exists  only  one  mode    of  transporta+on).  A  non-­‐coopera+ve  game  is   formulated  consis+ng  of  a  set  of  commuters  who  compete  for  routes.       •  In  our  work,  we  inves&gate  a  dual  problem  facing  both  the  commuters  and  the   transporta&on  authority;  the  commuters  choose  their  trip  mode,  while  at  the   same  +me  the  transporta+on  company  that  provides  a  bus  for  example,  makes   decisions  on  accep+ng  or  not  travel  requests  dynamically.     13/01/2015   nikolau  @  tsl.gr   21  
  21. Table  of  Contents   •  Collec+ve  Adap+ve  Systems   • 

    The  ALLOW  ENSEMBLES  project   •  The  Strategic  Ensemble  Concept   •  The  FlexiBus  Scenario   •  Game  Theory:  Non-­‐coopera+ve  and   coopera+ve  games   •  Future  Work  -­‐  Publica+ons   13/01/2015   nikolau  @  tsl.gr   22  
  22. The  FlexiBus  Scenario:  Assump+ons     •  A  route  is

     a  set  of  predefined  pick-­‐up  points     •  We  consider  two  phases  in  the  lifecycle  of  a  route:     –  The  pre-­‐booking  phase:  a  route  is  going  to  be  executed  if  a   certain  number  of  requests  is  reached  un+l  a  certain   deadline   –  The  execu+on  phase:  the  route  is  bound  to  start  or  it  has   already  started   •  The  pick-­‐up  points  of  a  route  are  bound  to  change  at   the  execu+on  phase     –  Add  a  pick-­‐up  point  due  to  a  new  request   –  Remove  a  pick-­‐up  point  a]er  a  cancella+on    
  23. Time-­‐line   End  of   Route   Pre-­‐booking    

    phase   Prepara+on  phase   Ini+aliza+on   Running  phase   Execu+on  Ensemble   Strategy  Ensemble   Booking  phase  
  24. En+ty’s  U+lity   •  En+ty’s  u+lity   – U+lity  accrued  when

     par+cipa+ng  in  a  specific   ensemble   – Calculated  by  the  en+ty  according  to   •  Her  preferences  (that  are  publicly  known)   •  Private  informa+on     •  According  to  the  en+ty’s  u+lity  the  winning   route  may  be  different  from  the  one  resulted   by  the  evalua+on  of  the  other  members  of  the   ensemble  (e.g.  the  route  manager).    
  25. En+ty  U+lity  (Example)   •  Consider  Peter  sending  the  request

     (Des+na+on:  Piazza  Duomo,  arrival  +me:  21.30)   to  Urban  Mobility  System  with  preferences   –  Pay  with  credit  card  (desired)   –  Non-­‐smoking  bus  (demanded)   –  Window  seat  (desired)   •  Consider  the  following  candidate  routes   –  Route  A  (at  a  cost  of  10  Euros):  non-­‐smoking  bus,  pay  with  credit  card,  window  seat     –  Route  B  (at  a  cost  of  12  Euros):  non-­‐smoking  bus,  pay  with  credit  card,  aisle  seat     –  Route  C  (at  a  cost  of  7  Euros):  non-­‐smoking  bus,  pay  with  credit  card,  aisle  seat     •  Route  A  has  higher  value  to  Peter  than  Route  B  but  not  clear  for  Route  C  (it  depends   on  how  Peter  values  money)  
  26. Table  of  Contents   •  Collec+ve  Adap+ve  Systems   • 

    The  ALLOW  ENSEMBLES  project   •  The  Strategic  Ensemble  Concept   •  The  FlexiBus  Scenario   •  Game  Theory:  Non-­‐coopera&ve  and   coopera&ve  games   •  Future  Work  -­‐  Publica+ons   13/01/2015   nikolau  @  tsl.gr   27  
  27. Game  theore+c  models   •  Analyze  models  that:   – show

     the  strategic  interac+ons  among  various   components     •  my  decisions  affect  others’  decisions     – derive  equilibria  so  that  u+lity/profit  is  maximized     •  Nash  equilibrium    
  28. Nash  Equilibrium   •  Nash  equilibrium  is  an  outcome  of

     a  game  in  which  each   player  is  assumed  to  know  the  equilibrium  strategies  of  the   other  players,  and  no  player  has  anything  to  gain  by  changing   only  his  own  strategy  unilaterally   –  In  a  game  of  two  players  A  and  B,  the  pair  of  strategies  (s,  g)  is  a  Nash   equilibrium  if  s  is  op+mal  for  A  given  g  and  g  is  op+mal  for  B  given  s  
  29. Nash  Equilibrium  (Example)   •  Consider  two  players  A  and

     B   •  Strategies  for  player  A  →  {Top,  Le]}   •  Strategies  for  player  B  →  {Le],  Right}   •  Nash  equilibria:  (Top,  Le]),  (Bo[om,  Right)   B       A   Le]   Right   Top     2,1   0,0   Bo[om   0,0   1,2  
  30. Non-­‐coopera+ve  Games   •  Sta+c  games   –  all  players'

     decisions  are  made  simultaneously   –  players  receive  payoffs  that  depend  on  the  ac+ons  just  chosen   •  Dynamic  games   –  each  player  can  consider  his  plan  of  ac+on  not  only  at  the  beginning  of  the   game  but  also  whenever  he  has  to  make  a  decision   –  perfect/imperfect  informa+on   •  At  each  move  the  player  with  the  move  knows  the  full  history  of  the  play  thus   far   •  Games  of  complete/incomplete  informa+on   –  Each  player’s  payoff  func+on  is  common  knowledge  among  all  players  
  31. A  Non-­‐coopera+ve  Game  of  Complete   Informa+on   •  Objec+ve:

     model  the  interac+ons  of  en++es  when  a  new   request  arrives  in  a  route  that  is  being  executed  and   compute  their  op+mal  choices  (strategies)  based  on  u+li+es   •  Problem  descrip+on   –  We  consider  a  route  to  be  a  set  of  fixed  pick-­‐up  points  and  the   respec+ve  es+mated  travel  +mes  between  pick-­‐up  points   –  When  a  new  request  arrives,  the  various  en++es  make   decisions:   •  route  planner:  accept  or  reject  the  request  (in  case  of  accept  send   condi+ons  (travel  +me,  cost)   •  new  passenger:    accept  or  reject  offer   –  We  formulate  these  interac+ons  as  a  game     •  Are  there  equilibrium  strategies?  
  32. Assump+ons   •  All  passengers  have  the  same  des+na+on  

        •  Current  passengers  do  not  nego+ate  for  the  new   condi+ons  (resulted  by  the  new  passenger)  of  the  route   •  The  route  planner  has  to  take  into  account  that  any  viola+on   of  his  past  commitments  will  affect    nega+vely  his  u+lity   •  We  consider  a  game  of  complete  informa+on   •  The  route  planner  provides  private  informa+on  of  current   passengers  to  the  new  passenger   •  The  u+lity  func+ons  of  all  actors  are  common  knowledge    
  33. Assump+ons   •  We  consider  a  dynamic  game   • 

    Decision  points:  request  arrivals     •  new  strategies  have  to  de  derived  each  +me  a  new  request  arrives   (thus  a  new  game  is  formulated)   •  All  these  games  across  the  route  have  to  be  synchronized  in  order  to   derive  op+mal  profits  for  the  FlexiBus  company  and  the  passengers   •  Each  game  is  sequen+al   •  The  new  passenger  makes  a  request   •  The  route  planner  calculates  his  strategy  (accept  or  reject)  based   on  request   •  The  new  passenger  calculates  his  strategy  based  on  planner’s   strategy  
  34. Game  Formula+on   •  Set  of  players:     – 

    current  passengers  (1,…,n)   –  new  passenger  (np)   –  route  planner  (rp)     •  Strategy  profile:      (ti  :  travel  +me)      ti   ,  i=1,…n  are  fixed  and  known   = (1 ,2 ,…, , , )  
  35. Game  Formula+on   Profits:       –  Current  passengers:

            –  New  passenger:    G:  the  profit  gained  by  alterna+ve  solu+on    f:  func+on  that  incorporates  the  risk  of  adding  future  passengers     –  Route  Planner:          g:  func+on  that  incorporates  the  risk  of  losing  future  passengers   = (1 , 2 , … , , , )   = $ 0, < + ,, ≥   = $ , < + , − ( ), ≥   = % ' + ) ≠ − ( )  
  36. 37 Set of Processes Subsystem architecture Process/Flow Engine Utility Module

    Set of Processes services.tsl.gr Set of Processes Fragments (Parts of Meta-cells) Set of Processes Set of Processes Set of Services Design Time Run Time
  37. En+ty  Hierarchies   •  En++es  can  form  hierarchies  (of  en++es):

      –  For  example:  people  and  systems  par+cipate  in  a   department  en+ty,  which  in  turn  may  par+cipate  in  a   division  en+ty,  which  in  turn  may  par+cipate  in  a   corpora+on  en+ty.   •  U+lity  of  higher-­‐level  en+ty  could  be  defined  as  the   sum  of  the  u+li+es  of  the  en++es  one  level  below  (and   so  on  recursively),   •  But,  op+mal  u+lity  of  a  higher-­‐level  en+ty  is  NOT   necessarily  the  sum  of  the  op+mal  values  of  the   u+li+es  of  the  immediate  lower-­‐level  en++es.   •  …  a  number  of  interes+ng  research  ques+ons…   13/01/2015   nikolau  @  tsl.gr   38  
  38. Role  of  u+lity  in  Evolu+on     •  U+lity  func+on

     with  incorrect  (or  par+ally  correct)  parameters     –  may  result  in  wrong  selec+on  of  ensembles   –  e.g.,  use  of  incorrect  travel  dura+on  etc.       Execu+on   Context EvoKnowledge Monitor  U+lity   Evolve   U+lity  func+on  selects  the  proposed   solu+on   with   highest   u+lity   taking   into   account   goal,   context   and   user   preferences  (measured  u&lity)   1 Ensemble  with     high  u+lity  is  executed   2 Parameters   of   u+lity   func+on   are     adjusted  according  to  past  execu+ons  and   the  calculated  u+lity  and  monitored  u+lity   in  a  given  context   3   U+lity  Func+ons  
  39. Specializa+on  tree   Goal   ……...  specializa+on  ………   ……...

     specializa+on  ………   Ensemble  N   U+lity  Func+ons   ……...  specializa+on  ………  
  40. Example   Goal:  Reach  a   des+na+on   Car  sharing

      Non-­‐Public   Transporta+on   Public   Transporta+on   Rent  car   U1   (t,c)   U2   (t,c,r,d)   t:  travel  +me   c:  cost   r:  reliability   d:  walking  distance  
  41. Example     (in  Collabora+on  with  IPVS)   t:  travel

     +me   c:  cost   r:  reliability   d:  walking  distance   Goal:  Reach  a   des+na+on   Non-­‐Public   Transporta+on   Public   Transporta+on   Train   Flexibus   U1   (t,c)   U2 (t,c,  r,d)  
  42. Coopera+ve  Games   •  In  coopera&ve  game  theory,  interest  is

     on  outcomes  of  coali+ons  of   players  rather  than  ac+ons  of  individual  players     –  focus  in  coopera+on  games  is  on  coali+ons  that  will  be  formed  and  on   the  sharing  of  value  or  cost  incurred  among  members  of  the  coali+on.       •  Cost  alloca&on  problem  in  which  players  perform  a  joint  task  and   allocate  its  cost  among  them     •  Why  use  coopera+ve  games   –  Helpful  tool  if  performance  of  an  intelligent  system  and  its  en++es  can   be  improved  when  several  players  cooperate   •  Dynamic  coopera+ve  game  (??)   •  Implementa+on  issues:     –  get  informa+on  on  game  parameters  and  data  from  EvoKnowledge  (?),   –  test  game  and  obtain  results  in  ALLOW  Ensembles  plauorm,  ….   13/01/2015   nikolau  @  tsl.gr   43  
  43. The  General  Idea  of  an  Algorithm     for  Coopera+ve

     Games   •  Game  (,  )   •  Specify  set  ={1,…,}  of  poten+al  users  involved  (=||).   •  Specify  cost  func+on  :  ​2↑ →ℝ  of  a  route,  where  ()  is  the  joint  cost  of   the  route  used  by  the  set  ⊆  of  users  ((∅)=0).       •  A  required  property  for  :   •  Subaddi+ve  cost:    For  every  two  disjoint  sets  of  users  the  cost  of  the  route   if  they  merge  is  smaller  than  or  equal  to  the  costs  of  the  route  they  would   incur  if  used  separately  ((​↓1 ∪​↓2 )≤(​↓1 )+(​↓2 ),      ​↓1 ,​↓2  ⊂).   •  In  a  subaddi+ve  game:  ()≤∑↑▒({}) .  If  this  condi+on  holds  with   strict  inequality  then  the  game  is  called  essen&al  (each  player  gains  from   coopera+on).       •  If  subaddi+vity  property  does  not  hold,  coali+ons  other  than  the  grand   coali+on  might  be  possible.     •  Cost  should  reflect:   –  Services  required  by  the  operator,  Infrastructure  costs,  Payments,  …   13/01/2015   nikolau  @  tsl.gr   44  
  44. Algorithm    (cont.)   •  Allocate  ()  among  the  users

     in  .   •  Specify  an  alloca+on  rule  :()=(​↓1 ,…,​↓ )   ..  ∑↑▒​↓  =()  (such  as    Shapley  value   for  fairness  or  core  for  stability).     •   is  an  imputa&on  of  game  (,)  if  the  following   hold:   –  ∑↑▒​↓  =()  (1)  feasibility  of  the  grand   coali+on  (costs  are  reimbursed)  and   –  Pareto  efficiency:  ​↓ ≤({})  ∀  (2)  no  player  pays   a  higher  price  in  the  grand  coali+on  than  he  would  do   independently       13/01/2015   nikolau  @  tsl.gr   45  
  45. Table  of  Contents   •  Collec+ve  Adap+ve  Systems   • 

    The  ALLOW  ENSEMBLES  project   •  The  Strategic  Ensemble  Concept   •  The  FlexiBus  Scenario   •  Game  Theory:  Non-­‐coopera+ve  and   coopera+ve  games   •  Future  Work  -­‐  Publica&ons   13/01/2015   nikolau  @  tsl.gr   46  
  46. Future  Work   •  In  the  case  of  one  route

      –  Permit  ac+ons  such  as  adding  pick-­‐up  points  in  order   to  serve  new  passenger  requests  or  removing  pick-­‐up   points  in  case  of  cancela+ons   –  Perform  nego+a+ons  with  current  passengers  when  a   new  request  arrives   •  Consider  mul+ple  routes  for  one  request  as  part   of  the  decision  mechanism   •  Design  routes  according  to  a  decision  making   mechanism  that  takes  into  account  traffic   demand    
  47. Some  recent  related  publica+ons   •  “A  Game  Theore+c  Approach

     for  Managing  Mul+-­‐Modal  Urban  Mobility   Systems”,  Vasilios  Andrikopoulos,  Marina  Bitsaki,  Antonio  Bucchiarone,   San+ago  Gómez  Sáez,  Dimka  Karastoyanova,  Frank  Leymann,  Christos   Nikolaou,  Marco  Pistore,  2th  Interna+onal  Conference  on  the  Human  Side   of  Service  Engineering  Human  Factors  and  Ergonomics,  2014/7/19,   Kraków,  Poland:  CRC  Press/Taylor  &  Francis   •  "U+lity-­‐based  Decision  Making  in  Collec+ve  Adap+ve  Systems.“,   Proceedings  of  the  4th  Interna+onal  Conference  on  Cloud  Compu+ng  and   Services  Science  (CLOSER’14),  Andrikopoulos  Vasilios,  Marina  Bitsaki,   San+ago  Gómez  Sáez,  Dimka  Karastoyanova,  Christos  Nikolaou,  and  Alina   Psycharaki.  (2014).   •  “Towards  Modelling  and  Execu+on  of  Collec+ve  Adap+ve  Systems”.  A.  V.   Andrikopoulos,  A.  Bucchiarone,  S.  Gomez  Saez,  D.  Karastoyanova,  and  C.   Antares  Mezzina.  9th  Interna+onal  Workshop  on  Engineering  Service-­‐ Oriented  Applica+ons  (WESOA  2013),  In  conjunc+on  with  ICSOC  2013,   December  2nd  2013,  Berlin,  Germany.   13/01/2015   nikolau  @  tsl.gr   48