Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ニューラルネット
Search
youichiro
February 09, 2017
Technology
0
190
ニューラルネット
長岡技術科学大学
自然言語処理研究室
B3ゼミ勉強会(第3回)
youichiro
February 09, 2017
Tweet
Share
More Decks by youichiro
See All by youichiro
日本語文法誤り訂正における誤り傾向を考慮した擬似誤り生成
youichiro
0
1.6k
分類モデルを用いた日本語学習者の格助詞誤り訂正
youichiro
0
110
Multi-Agent Dual Learning
youichiro
1
180
Automated Essay Scoring with Discourse-Aware Neural Models
youichiro
0
130
Context is Key- Grammatical Error Detection with Contextual Word Representations
youichiro
1
150
勉強勉強会
youichiro
0
90
Confusionset-guided Pointer Networks for Chinese Spelling Check
youichiro
0
200
A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning
youichiro
0
180
An Empirical Study of Incorporating Pseudo Data into Grammatical Error Correction
youichiro
0
210
Other Decks in Technology
See All in Technology
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
120
生成AI時代の自動E2Eテスト運用とPlaywright実践知_引持力哉
legalontechnologies
PRO
0
220
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
140
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
550
世界最速級 memcached 互換サーバー作った
yasukata
0
340
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
350
品質のための共通認識
kakehashi
PRO
3
250
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
680
日本Rubyの会の構造と実行とあと何か / hokurikurk01
takahashim
4
1k
AWS Bedrock AgentCoreで作る 1on1支援AIエージェント 〜Memory × Evaluationsによる実践開発〜
yusukeshimizu
6
390
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
350
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
190
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Practical Orchestrator
shlominoach
190
11k
The Language of Interfaces
destraynor
162
25k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Faster Mobile Websites
deanohume
310
31k
How to train your dragon (web standard)
notwaldorf
97
6.4k
How STYLIGHT went responsive
nonsquared
100
6k
Transcript
χϡʔϥϧωοτ 平成29年2⽉9⽇ ⻑岡技術科学⼤学 ⾃然⾔語処理研究室 ⼩川耀⼀朗
⽬次 • ਓχϡʔϩϯ • χϡʔϥϧωοτ • χϡʔϥϧωοτͷछྨ • ύʔηϓτϩϯ •
όοΫϓϩύήʔγϣϯ 1 / 14
⼈⼯ニューロンのモデル ⽣物の神経細胞は、他の複数の神経細胞から信号を受け取り、細胞 内で処理を施したうえで、信号出⼒を他の神経細胞に送る ਓχϡʔϩϯとは、このような働きを単純化して数学的に模擬し た計算素⼦のこと 2 ⼈⼯ニューロンの構成 複数の⼊⼒信号を受け取り、 適当な計算を施したうえで 出⼒信号を出⼒する
/ 14
⼈⼯ニューロンのモデル 3 " ~$ : ⼊⼒信号 " ~$ : 重み
: しきい値 : 出⼒信号 • ⼊⼒信号ごとにあらかじめ決められた定数$ を掛け合わせる この定数$ をॏΈと呼ぶ • ⼊⼒信号は重みを掛け合わせたうえで⾜し合わせ、更に͖͍͠ と呼ばれる定数で減算する • その結果をとすると、 をୡؔ()で処理し結果を、⼈⼯ ニューロンの出⼒とする = - . . − . = () / 14
⼈⼯ニューロンのモデル 伝達関数には様々な関数を⽤いることができる εςοϓؔやγάϞΠυؔなどがよく⽤いられる 4 ステップ関数 シグモイド関数 シグモイド関数: = " "1234
/ 14
⼈⼯ニューロンの挙動 5 ⼈⼯ニューロンの例 重み " = 5 = 1 しきい値
= 1.5 " 5 0 0 -1.5 0 0 1 -0.5 0 1 0 -0.5 0 1 1 0.5 1 ANDཧԋࢉࢠ / 14
⼈⼯ニューロンの挙動 6 ⼈⼯ニューロンの例 重み " = 5 = 1 しきい値
= . " 5 0 0 -0.5 0 0 1 0.5 1 1 0 0.5 1 1 1 1.5 1 ORཧԋࢉࢠ / 14
⼈⼯ニューロンの挙動 7 ⼈⼯ニューロンの例 ೖྗ͕1ͭ 重み w = − しきい値 =
−. 0 0.5 1 1 -0.5 0 NOTཧԋࢉࢠ / 14 ⼈⼯ニューロンの組み合わせることで任意の論理回路が構成可能 ⼈⼯ニューロンの挙動は、重みとしきい値を変更することで変化 → ⼈⼯ニューロンにある挙動をさせたいなら、その挙動に適した重みとし きい値を学習させれば良い
ニューラルネット • 複数の⼈⼯ニューロンを組み合わせたものを、χϡʔϥϧωοτ という • ⼈⼯ニューロンを層状に並べ、⼊⼒から出⼒に向けて順に信号が 伝搬していくネットワークを、ϑΟʔυϑΥϫʔυܕωοτϫʔ Ϋと呼ぶ 8 フィードフォワード型ネットワーク
/ 14
ニューラルネットの種類 フィードフォワード型ネットワークは様々な形式に拡張可能 9 2⼊⼒3階層フィードフォワード型ネットワーク このように、⼈⼯ニューロンを増やしたり、階層を増やした りすることでネットワークの規模を拡⼤することが可能 / 14
ニューラルネットの種類 他にも ⼤規模で多層からなる構造 層間が全結合ではなく、特定の部分のみ接続される構造 10 ਂֶश また ある⼈⼯ニューロンの出⼒を前段の⼈⼯ニューロンの⼊⼒に加える構造 ϦΧϨϯτωοτϫʔΫ /
14
パーセプトロン 11 ⼊⼒層は、⼊⼒信号を中間層に伝えるだけの固定化した素⼦ 中間層の重みとしきい値は、ランダムに初期化した定数 出⼒層の重みとしきい値は学習によって変更が可能 / 14
パーセプトロンの学習 12 誤差 = 教師データ? − 出⼒ パーセプトロンの学習では、学習データをニューラルネットに与えて出⼒を計 算するし、出⼒と教師データを⽐較し、2つの誤差が⼩さくなるように重みと しきい値を調節する
しかし、中間層の固定化された重みとしきい値によっては学習データを満⾜す る学習ができない場合がある / 14
バックプロパゲーション パーセプトロンは出⼒層の重みとしきい値のみを学習する⽅法だった 更に前段の重みをバックプロパゲーションを⽤いて学習する バックプロパゲーションでは、出⼒と教師データの誤差を逆向きに伝 える 13 1. ネットワーク出⼒に誤差Eが⽣じる 2. 誤差Eを、中間層との結合の重みに
応じて分配する 3. それぞれの⼈⼯ニューロンにおいて、 分配された誤差の値を使って重みを 更新する 3層のネットワークのみでなく、ΑΓଟͷ ニューラルネットの学習が可能となる / 14
まとめ • ⼈⼯ニューロン • ニューラルネット • ニューラルネットの種類 • パーセプトロン •
バックプロパゲーション 14 / 14