Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MVP開発における生成AIの活用と導入事例
Search
gree_tech
PRO
October 17, 2025
Technology
0
9
MVP開発における生成AIの活用と導入事例
GREE Tech Conference 2025で発表された資料です。
https://techcon.gree.jp/2025/session/TrackA-4
gree_tech
PRO
October 17, 2025
Tweet
Share
More Decks by gree_tech
See All by gree_tech
今この時代に技術とどう向き合うべきか
gree_tech
PRO
0
600
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
10
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
7
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
0
8
あうもんと学ぶGenAIOps
gree_tech
PRO
0
4
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
14
コンテンツモデレーションにおける適切な監査範囲の考察
gree_tech
PRO
0
4
新サービス立ち上げの裏側 - QUANT for Shopsで実践した開発から運用まで
gree_tech
PRO
0
3
アドフリくんにおけるマイクロサービス間での一貫したトレース実現
gree_tech
PRO
0
5
Other Decks in Technology
See All in Technology
そのWAFのブロック、どう活かす? サービスを守るための実践的多層防御と思考法 / WAF blocks defense decision
kaminashi
0
200
Simplifying Cloud Native app testing across environments with Dapr and Microcks
salaboy
0
150
Adminaで実現するISMS/SOC2運用の効率化 〜 アカウント管理編 〜
shonansurvivors
4
450
ガバメントクラウドの概要と自治体事例(名古屋市)
techniczna
2
240
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
270
LLMアプリの地上戦開発計画と運用実践 / 2025.10.15 GPU UNITE 2025
smiyawaki0820
1
530
セキュアな認可付きリモートMCPサーバーをAWSマネージドサービスでつくろう! / Let's build an OAuth protected remote MCP server based on AWS managed services
kaminashi
3
320
技育祭2025【秋】 企業ピッチ/登壇資料(高橋 悟生)
hacobu
PRO
0
100
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
290
Findy Team+ QAチーム これからのチャレンジ!
findy_eventslides
0
110
[Keynote] What do you need to know about DevEx in 2025
salaboy
0
170
社内報はAIにやらせよう / Let AI handle the company newsletter
saka2jp
8
1.4k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Building Applications with DynamoDB
mza
96
6.7k
Docker and Python
trallard
46
3.6k
Become a Pro
speakerdeck
PRO
29
5.5k
How STYLIGHT went responsive
nonsquared
100
5.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Documentation Writing (for coders)
carmenintech
75
5.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Context Engineering - Making Every Token Count
addyosmani
6
250
Transcript
MVP開発における生成AIの活用と導入事例 グリーエックス社 古屋研太
アジェンダ 1. はじめに:AI開発の理想と現実 2. 開発におけるAI活用(バイブコーディング) 3. アプリケーション機能としてのAI活用 4. まとめ
最初の理想:AIならいい感じに仕様書作ってくれる? ちょうど社内向けツールを作りたいという要望があったの で、AI活用の実践もかねてアプリ開発を開始 ・営業チームの要望に加え、将来的な利用を踏まえた大ま かな内容をまとめた企画書がある ・それを元にAIが仕様書を書いてくれれば、その仕様書を 元に内容をすり合わせできて楽 ・仕様書をAIが生成できれば、アプリ開発に詳しくない人 でもアプリを作って業務効率化できて便利 現実は甘くなかった…
理想と現実 : ハルシネーション AIのハルシネーションが出やすい… 「生成AIが事実とは異なる情報や存在しない情報を、あたかも 正しい情報であるかのように出力してしまう現象」 簡単な企画書段階の資料では、解釈の幅が大きすぎるので、ア プリケーションの仕様書に起こすには情報が不足しすぎている 生成した仕様書にはそれっぽい内容が書いているが、不足して
いる部分を無理に補おうとした結果、不自然な仕様があちこち に見られた
理想と現実 : ハルシネーション 生成した仕様書を検証するのが大変すぎる 前述のハルシネーションを起こした内容を添削するために は、文章からアプリの仕様をちゃんと読んで理解して、矛 盾点な変な内容を確認しないといけない 最初からアプリに詳しい人間が書いたほうが早くない…? 簡単なwebページでもなければ さすがにAIだけで完璧に作ることは現状は困難
活用方針の転換 : 詳細仕様書よりプロトタイピング • 膨大な文章を読むより、「動くモノ」を触る方が分かりやすい • ソースコードから仕様を文章にしてもらう方が正確な内容が出る 最速で「動くプロトタイプ」を作り それをもとに議論する方針へ。 ※
多く工数が空いていたのがエンジニア1名かつ内製開発だったのでこ の方針ができたが、必ずしもこの方法ができるわけではないので注意
AIとのペアプロ「バイブコーディング」 「こんな感じ」という感覚(Vibe)を頼りに、AI と対話しながら試行錯誤する開発スタイル また、自分の得意分野を生かしつつ詳しくない 分野をAIが補完してくれるのがよい。 一方で、「こんなアプリを作りたい」という仕様 を一生懸命指示しているのにうまくいかない経験 をした方もいるのではないでしょうか?
バイブコーディングの勘所 (ハルシネーションを回避するには?) 最初が肝心 アプリの土台をちゃんと作ってから少し ずつ作っていく AIから見ても曖昧な指示から1からアプリを作るに は、どのようなシステム構成や技術選定をするのか 選択肢が多すぎて、変な土台から作り始めてしま う。 絞れる選択肢は可能な限り絞ってあげるとよい
① 壁打ち ② 生成&試行 ③ 改善 ④ エラー解決 の4つのステップを少しずつ繰り返して作る AIが変な方向に実装していかないようにするに は、少しずつ確認しながら作るのが一番 常にアプリがエラーなく実行できるようになっ てからマージする
バックエンドはOpenAPIとAIの相性が〇 AIに直接バックエンドを作成させるのは前述の ハルシネーションの問題が起きやすい Open API形式のドキュメントを元にバイブ コーディングすれば、AIのコンテキストに収ま りやすいので精度もよく、Swagger Editorで見 やすく理解しやすい。 ある程度問題なければAPIのソースコードを生
成し、その雛型を元に再度バイブコーディング していくと早く実装できる ソースコード
バックエンドができればフロントエンドは早い • 情報が少ない企画書の段階でAIにアプリを作らせるのは 大変だが、そこにバックエンドのAPI定義があると一気に 精度が上がる印象。基本的なwebアプリはバックエンド の情報を表現することなので、どんなデータ構造か決 まっていれば非常に良い成果物が出てくる。 • ややこしいUIのレイアウトも、気になった点があれば自 然言語で指摘すれば直してくれる
「◦◦を右寄せにして」「文字を全体小さく」など • ブラウザの「検証」メニューからUIのclass名を取得して 指示を出すとさらに効果的
アプリ構造を把握しやすい文書を生成させる プロトタイピングによってとりあえず触って理解し やすい部分は一気に構築できるものの、内部の権限 やアプリの全体的な画面設計など俯瞰してみる必要 がある部分もある 適宜必要なタイミングで、AIにソースコードを元に 画面遷移図や権限表など、見てわかりやすい図を描 いてもらうのも効果的 Mermaid記法はMarkdown記法みたいな特定の記号 と書き方で図をかけるので、文字を扱うのが得意な
生成AIと相性が良いのでお勧め
アプリケーション機能としてのAI活用 アプリ側の機能としてもAIを活用 • 文書の解析と構造化 • 表記ゆれ対策 この2つに関して、AIを活用することで ユーザビリティの改善や運用コストの削減を見込んでいる
文書の解析と構造化をAIで アップロードされた書類の要約と評価を自動実行 する仕組みを構築 構造化出力(structured output)機能を使うことで、数枚の文書であれば かなりの精度で行い、目的のデータ構造に落とし込むことが現在でも可能 GeminiであればGoogle AI Studio上で試すことができるので、エンジニア 以外でも実装が可能
今まで絶対にできなかった領域を作業分担できる
表記ゆれ対策にAIを 表記ゆれの修正はプログラムだけで実装はかなり難し い (Excel / Microsoft Excelは同じだけど、Java / Java Script
はぜんぜん違う) 生成AIであれば単語の意味から推察してくれるので効果 的に利用できる ただし、毎回の入力の度に生成AIを起動しているとコ ストと時間がかかるので、深夜のバッチで実行 Java Java Script C# C++ Excel MicrosoftExcel Javascript Java Java Script C# C++ Excel MicrosoftExcel Javascript Java Script Java C# C++ Excel DB
まとめ • プロトタイプをバイブコーディングで作って認識合わせは効果的 • 生成AIに1からすべて1回で作らせない 少しずつ確認しながら作る ➡ 正しい情報を積み重ねていくほど、AIの成果物も精度が高まる プロト段階でエンジニア以外でも作りやすく ➡
パフォーマンスは無視して簡単にモックサーバーが作れるような仕組み プロトタイプから仕様書作成を仕組化 ➡ 動いてる仕組みを元に仕様書を書けば精度も高い 課題